Article

A robust species tree for the alphaproteobacteria.

Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
Journal of Bacteriology (Impact Factor: 2.69). 08/2007; 189(13):4578-86. DOI: 10.1128/JB.00269-07
Source: PubMed

ABSTRACT The branching order and coherence of the alphaproteobacterial orders have not been well established, and not all studies have agreed that mitochondria arose from within the Rickettsiales. A species tree for 72 alphaproteobacteria was produced from a concatenation of alignments for 104 well-behaved protein families. Coherence was upheld for four of the five orders with current standing that were represented here by more than one species. However, the family Hyphomonadaceae was split from the other Rhodobacterales, forming an expanded group with Caulobacterales that also included Parvularcula. The three earliest-branching alphaproteobacterial orders were the Rickettsiales, followed by the Rhodospirillales and then the Sphingomonadales. The principal uncertainty is whether the expanded Caulobacterales group is more closely associated with the Rhodobacterales or the Rhizobiales. The mitochondrial branch was placed within the Rickettsiales as a sister to the combined Anaplasmataceae and Rickettsiaceae, all subtended by the Pelagibacter branch. Pelagibacter genes will serve as useful additions to the bacterial outgroup in future evolutionary studies of mitochondrial genes, including those that have transferred to the eukaryotic nucleus.

Full-text

Available from: Allan W Dickerman, Apr 21, 2015
0 Followers
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thousands of whole-genome and whole-proteome sequences have been made available through advances in sequencing technology, and sequences of millions more organisms will become available in the coming years. This wealth of genetic information will provide numerous opportunities to enhance our understanding of these organisms including a greater understanding of relationships among species. Researchers have used 16S rRNA and other gene sequences to study the evolutionary origins of bacteria, but these strategies do not provide insight into the sharing of genes among bacteria via horizontal transfer. In this work we use an open source software program called pClust to cluster proteins from the complete proteomes of twelve species of Alphaproteobacteria and generate a dendrogram from the resulting orthologous protein clusters. We compare the results with dendrograms constructed using the 16S rRNA gene and multiple sequence alignment of seven housekeeping genes. Analysis of the whole proteomes of these pathogens grouped Rickettsia typhi with three other animal pathogens whereas conventional sequence analysis failed to group these pathogens together. We conclude that whole-proteome analysis can give insight into relationships among species beyond their phylogeny, perhaps reflecting the effects of horizontal gene transfer and potentially providing insight into the functions of shared genes by means of shared phenotypes.
    11/2013; 2(4):627-635. DOI:10.3390/pathogens2040627
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are eukaryotic organelles which contain the own genetic material and evolved from free-living eubacteria, namely hydrogen-producing Alphaproteobacteria. Since 1965, biologists provided, by research at molecular level, evidence for the prokaryotic origins of mitochondria. However, determining the precise origins of mitochondria is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. The use of new tools to evidence the prokaryotic origin of mitochondria could be useful to gain an insight into the bacterial endosymbiotic event that resulted in the permanent acquisition of bacteria, from the ancestral cell, that through time were transformed into mitochondria. Electron microscopy has shown that both proteobacterial and yeast cells during their growth in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture due to elemental tellurium (Te0) that formed large deposits either along the proteobacterial membrane or along the yeast cell wall and mitochondria. Since the mitochondrial inner membrane composition is similar to that of proteobacterial membrane, in the present work we evidenced the black tellurium deposits on both, cell wall and mitochondria of ρ+ and respiratory deficient ρ- mutants of yeast. A possible role of tellurite in studying the evolutionary origins of mitochondria will be discussed
    Gene 01/2015; DOI:10.1016/j.gene.2015.01.060 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overwhelming evidence supports the endosymbiosis theory that mitochondria originated once from the Alphaproteobacteria. However, its exact position in the tree of life remains highly debated. This is because systematic errors, including biased taxonomic sampling, high evolutionary rates and sequence composition bias have long plagued the mitochondrial phylogenetics. In this study, we address this issue by 1) increasing the taxonomic representation of alphaproteobacterial genomes by sequencing 18 phylogenetically novel species. They include 5 Rickettsiales and 4 Rhodospirillales, two orders that have shown close affiliations with mitochondria previously, 2) using a set of 29 slowly evolving mitochondria-derived nuclear genes that are less biased than mitochondria-encoded genes as the alternative "well behaved" markers for phylogenetic analysis, 3) applying site heterogeneous mixture models that account for the sequence composition bias. With the integrated phylogenomic approach, we are able to for the first time place mitochondria unequivocally within the Rickettsiales order, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family. Our results suggest that mitochondria most likely originated from a Rickettsiales endosymbiont already residing in the host, but not from the distantly related free-living Pelagibacter and Rhodospirillales.
    Scientific Reports 01/2015; 5:7949. DOI:10.1038/srep07949 · 5.08 Impact Factor