Article

Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa.

Department of Psychiatry, School of Medicine, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Neuropsychopharmacology (Impact Factor: 7.83). 03/2008; 33(3):513-23. DOI: 10.1038/sj.npp.1301443
Source: PubMed

ABSTRACT Anorexia nervosa (AN) is an illness characterized by aversion to ingestion of normally palatable foods. We examined whether there is a primary disturbance of taste processing and experience of pleasure using a sucrose/water task in conjunction with functional magnetic resonance imaging (fMRI). To avoid confounding effects of illness, 16 women recovered from restricting-type AN were compared to 16 control women (CW). We used a region of interest-based fMRI approach to test the idea that individuals with AN have differential neural activation in primary and secondary taste cortical regions after sucrose and water administration. Compared to CW, individuals recovered from AN showed a significantly lower neural activation of the insula, including the primary cortical taste region, and ventral and dorsal striatum to both sucrose and water. In addition, insular neural activity correlated with pleasantness ratings for sucrose in CW, but not in AN subjects. Altered taste processing may occur in AN, based on differences in activity in insular-striatal circuits. These data provide the first evidence that individuals with AN process taste stimuli differently than controls, based on differences in neural activation patterns.

Download full-text

Full-text

Available from: Walter H Kaye, Jul 02, 2015
0 Followers
 · 
243 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neural underpinnings of anorexia nervosa (AN) are poorly understood. Results from existing functional brain imaging studies using disorder-relevant food- or body-stimuli have been heterogeneous and may be biased due to varying compliance or strategies of the participants. In this study, resting state functional connectivity imaging was used. To explore the distributed nature and complexity of brain function we characterized network patterns in patients with acute AN. Thirty-five unmedicated female acute AN patients and 35 closely matched healthy female participants underwent resting state functional magnetic resonance imaging. We used a network-based statistic (NBS) approach [Zalesky et al., 2010a] to identify differences between groups by isolating a network of interconnected nodes with a deviant connectivity pattern. Group comparison revealed a subnetwork of connections with decreased connectivity including the amygdala, thalamus, fusiform gyrus, putamen and the posterior insula as the central hub in the patient group. Results were not driven by changes in intranodal or global connectivity. No network could be identified where AN patients had increased coupling. Given the known involvement of the identified thalamo-insular subnetwork in interoception, decreased connectivity in AN patients in these nodes might reflect changes in the propagation of sensations that alert the organism to urgent homeostatic imbalances and pain-processes that are known to be severely disturbed in AN and might explain the striking discrepancy between patient's actual and perceived internal body state. Hum Brain Mapp, 2015. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 01/2015; 36(5). DOI:10.1002/hbm.22736 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence contributing to the understanding of neurobiological mechanisms underlying appetite dysregulation in anorexia nervosa draws heavily on separate lines of research into neuroendocrine and neural circuitry functioning. In particular, studies consistently cite elevated ghrelin and abnormal activation patterns in homeostatic (hypothalamus) and hedonic (striatum, amygdala, insula) regions governing appetite. The current preliminary study examined the interaction of these systems, based on research demonstrating associations between circulating ghrelin levels and activity in these regions in healthy individuals. In a cross-sectional design, we studied 13 women with active anorexia nervosa (AN), 9 women weight-recovered from AN (AN-WR), and 12 healthy-weight control women using a food cue functional magnetic resonance imaging paradigm, with assessment of fasting levels of acylated ghrelin. Healthy-weight control women exhibited significant positive associations between fasting acylated ghrelin and activity in the right amygdala, hippocampus, insula, and orbitofrontal cortex in response to high-calorie foods, associations which were absent in the AN and AN-WR groups. Women with AN-WR demonstrated a negative relationship between ghrelin and activity in the left hippocampus in response to high-calorie foods, while women with AN showed a positive association between ghrelin and activity in the right orbitofrontal cortex in response to low-calorie foods. Findings suggest a breakdown in the interaction between ghrelin signaling and neural activity in relation to reward responsivity in AN, a phenomenon that may be further characterized using pharmacogenetic studies.
    Psychiatry Research Neuroimaging 05/2014; 223(2). DOI:10.1016/j.pscychresns.2014.04.015 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective:Recent advances in neuroimaging techniques have enabled a better understanding of the neurobiological underpinnings of anorexia nervosa (AN). The aim of this paper was to summarise our current understanding of the neurobiology of AN.Methods:The literature was searched using the electronic databases PubMed and Google Scholar, and by additional hand searches through reference lists and specialist eating disorders journals. Relevant studies were included if they were written in English, only used human participants, had a specific AN group, used clinical populations of AN, group comparisons were reported for AN compared to healthy controls and not merely AN compared to other eating disorders or other psychiatric groups, and were not case studies.Results:The systematic review summarises a number of structural and functional brain differences which are reported in individuals with AN, including differences in neurotransmitter function, regional cerebral blood flow, glucose metabolism, volumetrics and the blood oxygen level dependent response.Conclusion:Several structural and functional differences have been reported in AN, some of which reverse and others which persist following weight restoration. These findings have important implications for our understanding of the neurobiological underpinnings of AN, and further research in this field may provide new direction for the development of more effective treatments.
    Australian and New Zealand Journal of Psychiatry 11/2013; DOI:10.1177/0004867413509693 · 3.77 Impact Factor