Growth-related variations in the Bacillus cereus secretome.

Institut National de la Recherche Agronomique (INRA), Génétique microbienne et Environnement, Guyancourt, France.
PROTEOMICS (Impact Factor: 3.97). 06/2007; 7(10):1719-28. DOI: 10.1002/pmic.200600502
Source: PubMed

ABSTRACT Using 2-DE, transcriptional gene fusions and cell cytotoxicity assays, we followed changes in the Bacillus cereus strain ATCC14579 secretome, gene expression and culture supernatant cytotoxicity from the end of the vegetative phase up to 5 h after entry into the stationary phase. The concentration of each of the 22 proteins in the culture supernatant was determined at various times. In addition, the stability of the proteins was studied. Fifteen of these proteins, including 14 members of the virulence regulon PlcR, were known or predicted to be secreted. All of the secreted proteins reached a maximum concentration during early stationary phase, but there were significant differences in the kinetics of their concentrations. The time courses of protein concentrations were in agreement with gene expression data, except for cytotoxin CytK, which was unstable, and for the metalloprotease InhA1. Supernatant cytoxicity also peaked in early stationary phase, and the kinetics of cytotoxicity paralleled the time course of concentration of the PlcR-controlled toxin, CytK. Our concomitant study of the time course of protein concentrations, gene expression and supernatant cytotoxicity reveals that the pathogenic potential of B. cereus peaks during the transition state. It also suggests that there is diversity in the regulation of gene expression within the PlcR regulon.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.
    PLoS ONE 08/2014; 9(8):e103326. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The entomopathogen Bacillus thuringiensis produces dense biofilms under various conditions. Here, we report that the transition phase regulators Spo0A, AbrB and SinR control biofilm formation and swimming motility in B. thuringiensis, just as they control biofilm formation and swarming motility in the closely related saprophyte species B. subtilis. However, microarray analysis indicated that in B. thuringiensis, in contrast to B. subtilis, SinR does not control an eps operon involved in exopolysaccharides production, but regulates genes involved in the biosynthesis of the lipopeptide kurstakin. This lipopeptide is required for biofilm formation and was previously shown to be important for survival in the host cadaver (necrotrophism). Microarray analysis also revealed that the SinR regulon contains genes coding for the Hbl enterotoxin. Transcriptional fusion assays, Western blots and hemolysis assays confirmed that SinR controls Hbl expression, together with PlcR, the main virulence regulator in B. thuringiensis. We show that Hbl is expressed in a sustained way in a small subpopulation of the biofilm, whereas almost all the planktonic population transiently expresses Hbl. The gene coding for SinI, an antagonist of SinR, is expressed in the same biofilm subpopulation as hbl, suggesting that hbl transcription heterogeneity is SinI-dependent. B. thuringiensis and B. cereus are enteric bacteria which possibly form biofilms lining the host intestinal epithelium. Toxins produced in biofilms could therefore be delivered directly to the target tissue.
    PLoS ONE 01/2014; 9(1):e87532. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During bacterial infection, professional phagocytes are attracted to the site of infection, where they constitute a first line of host cell defense. Their function is to engulf and destroy the pathogens. Thus, bacteria must withstand the bactericidal activity of professional phagocytes, including macrophages to counteract the host immune system. Bacillus cereus infections are characterized by bacteremia despite the accumulation of inflammatory cells at the site of infection. This implies that the bacteria have developed means of resisting the host immune system. B. cereus spores survive, germinate and multiply in contact with macrophages, eventually producing toxins that kill these cells. However, the exact mechanism by which B. cereus evades immune attack remains unclear. This review addresses the interaction between B. cereus and macrophages, highlighting, in particular, the ways in which the bacteria escape the microbicidal activities of professional phagocytes. This article is protected by copyright. All rights reserved.
    FEMS Microbiology Letters 07/2013; · 2.72 Impact Factor


Available from
Aug 28, 2014