Urothelial sonic hedgehog signaling plays an important role in bladder smooth muscle formation.

Department of Urology, UCSF Children's Hospital, University of California San Francisco, P. O. Box 0738, 400 Parnassus A640, San Francisco, CA 94143-0738, USA.
Differentiation (Impact Factor: 2.84). 01/2008; 75(10):968-77. DOI: 10.1111/j.1432-0436.2007.00187.x
Source: PubMed

ABSTRACT During bladder development, primitive mesenchyme differentiates into smooth muscle (SM) under the influence of urothelium. The gene(s) responsible for this process have not been elucidated. We propose that the Sonic hedgehog (Shh) signaling pathway is critical in bladder SM formation. Herein, we examine the role of the Shh-signaling pathway during SM differentiation in the embryonic mouse bladder. Genes in the Shh pathway and SM expression in mouse embryonic (E) bladders (E12.5, 13.5, and 14.5) were examined by immunohistochemistry (IHC), in situ hybridization, and reverse transcription polymerase chain reaction (RT-PCR). To examine the effects of disrupting Shh signaling, bladder tissues were isolated at E12.5 and E14.5, that is, before and after bladder SM induction. The embryonic bladders were cultured on membranes floating on medium with and without 10 muM of cyclopamine, an Shh inhibitor. After 3 days, SM expression was examined by assessing the following: SM alpha-actin (SMAA), SM gamma-actin (SMGA), SM-myosin heavy chain (SM-MHC), Patched, GLI1, bone morphogenic protein 4 (BMP4), and proliferating cell nuclear antigen (PCNA) by IHC and RT-PCR. SM-related genes and proteins were not expressed in E12.5 mouse embryonic bladder before SM differentiation, but were expressed by E13.5 when SM differentiation was initiated. Shh was expressed in the urothelium in E12.5 bladders. Shh-related gene expression at E12.5 was significantly higher than at E14.5. In cyclopamine-exposed cultures of E12.5 tissue, SMAA, SMGA, GLI1, and BMP4 gene expression was significantly decreased compared with controls, but PCNA gene expression did not change. In cyclopamine-exposed E14.5 cultures, SMGA and SM-MHC gene expression did not change compared with controls. Using an in vitro embryonic bladder culture model, we were able to define the kinetics of SM- and Shh-related gene expression. Cyclopamine inhibited detrusor SM actin induction, but did not inhibit SM-MHC induction. SMAA and SMGA genes appear to be induced by Shh-signaling pathways, but the SM-MHC gene is not. Based on Shh expression by urothelium and the effects of Shh inhibition on bladder SM induction, we hypothesize that urothelial-derived Shh orchestrates induction of SM in the fetal mouse bladder.

Download full-text


Available from: Michael H Hsieh, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bladder exstrophy-epispadias complex (BEEC) is a complex and debilitating congenital disease. Familial and twin studies suggest a possible genetic component in BEEC pathogenesis. Bladder mesenchyme (detrusor) development requires induction by a signal from bladder urothelium, and we and others have shown the Shh-Gli-Bmp4 signalling pathway is likely to be involved. P63 is a master regulator in epithelial stratification and is expressed in urothelium. We have shown that p63 knock-out mice undergo excessive urothelial apoptosis. Failure of mesenchymal induction by epithelium leads to BEEC. We further demonstrated that insertion/deletion (in/del) polymorphisms (1 base pair (bp) ins and 4 bp ins., and 12 bp del) in the ΔNP63 promoter reduce transcriptional efficiency, and are associated with a statistically significant increase in the risk of BEEC in humans. Furthermore, a Genome-Wide Expression Profiling (GWEP) study suggests possible involvement of PERP in human BEEC. Intriguingly, PERP is a direct target of p63 during development, and is also involved in epithelial stratification. PERP co-localizes with desmosome, and both PERP and desmosome are essential for maintaining tissue integrity by cellular adhesion and epithelial stratification. A recent study showed that PERP and desmosome expression levels are abnormal in human BEEC patients. This review describes the role of the P63 > PERP > desmosome pathway in the development of human bladder during embryogenesis. We hypothesize that disruption of this pathway may increase the risk of BEEC.
    Journal of pediatric urology 06/2013; DOI:10.1016/j.jpurol.2013.05.001 · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling by the hedgehog (Hh) family of secreted growth factors is essential for development of embryonic blood vessels. Embryos lacking Hh function have abundant endothelial cells but fail to assemble vascular cords or lumenized endothelial tubes. However, the role of Hh signaling during later aspects of vascular patterning and morphogenesis is largely unexplored. We have used small molecule inhibitors and agonists to alter activity of the Hh signaling pathway in the chick embryo. When cyclopamine is added after cord formation, aortal cells form tubes, but these are small and disorganized and the density of the adjacent vascular plexus is reduced. Activation of the Hh pathway with SAG leads to formation of enlarged aortae and increased density of the plexus. The number of endothelial cell filopodia is found to correlate with Hh signaling levels. These studies show that Hh signaling levels must be tightly regulated for normal vascular patterning to be achieved.
    Developmental Dynamics 06/2011; 240(6):1354-64. DOI:10.1002/dvdy.22600 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse bladder mesenchyme differentiates into smooth muscle under the influence of urothelium at gestational day 13.5 (E13.5). Sonic hedgehog (Shh) is considered to be the upstream gene arising from the urothelium, which induces smooth muscle in the peripheral bladder mesenchyme. We hypothesize differential gene expression across the full thickness of bladder mesenchyme as a function of proximity to the inducing bladder urothelium and the peripheral location of the smooth muscle. Embryonic bladders from FVB mice were collected at E12.5, 13.5, 15 and 16 and cryosectioned followed by microdissection with a PixCell II laser capture microscope. RNA extraction was performed at the laser captured sites and mRNA expression profiles were measured using SYBR Green quantitative RT-PCR. Smooth muscle a-actin (SMAA) and smooth muscle myosin heavy chain (SM-MHC) were expressed in the E13.5, E15 and E16 bladders in the peripheral layer of mesenchyme, but not in the prospective submucosa. Patched 1 (Ptc1), Gli1 and bone morphogenetic protein (Bmp) 4 expression was consistently elevated in the mesenchymal layer immediately adjacent to the urothelium compared to the peripheral location at E12.5. After E12.5, Ptc1 expression decreased to an undetectable level throughout the bladder mesenchyme. The level of TGF-beta1 was highest in the mesenchymal layer adjacent to the serosa at E13.5. The level of expression of serum response factor (SRF) was also highest at E15 in the peripheral mesenchyme. Genes downstream of Shh are differentially expressed in the prospective submucosa vs. the peripheral bladder mesenchyme as a function gestation age and smooth muscle differentiation.
    The International journal of developmental biology 01/2010; 54(1):175-80. DOI:10.1387/ijdb.082610bl · 2.57 Impact Factor

Similar Publications