Retrospective analysis of haplotype-based case control studies under a flexible model for gene environment association.

Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan, People's Republic of China.
Biostatistics (Impact Factor: 2.24). 02/2008; 9(1):81-99. DOI: 10.1093/biostatistics/kxm011
Source: PubMed

ABSTRACT Genetic epidemiologic studies often involve investigation of the association of a disease with a genomic region in terms of the underlying haplotypes, that is the combination of alleles at multiple loci along homologous chromosomes. In this article, we consider the problem of estimating haplotype-environment interactions from case-control studies when some of the environmental exposures themselves may be influenced by genetic susceptibility. We specify the distribution of the diplotypes (haplotype pair) given environmental exposures for the underlying population based on a novel semiparametric model that allows haplotypes to be potentially related with environmental exposures, while allowing the marginal distribution of the diplotypes to maintain certain population genetics constraints such as Hardy-Weinberg equilibrium. The marginal distribution of the environmental exposures is allowed to remain completely nonparametric. We develop a semiparametric estimating equation methodology and related asymptotic theory for estimation of the disease odds ratios associated with the haplotypes, environmental exposures, and their interactions, parameters that characterize haplotype-environment associations and the marginal haplotype frequencies. The problem of phase ambiguity of genotype data is handled using a suitable expectation-maximization algorithm. We study the finite-sample performance of the proposed methodology using simulated data. An application of the methodology is illustrated using a case-control study of colorectal adenoma, designed to investigate how the smoking-related risk of colorectal adenoma can be modified by "NAT2," a smoking-metabolism gene that may potentially influence susceptibility to smoking itself.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two important contributors to missing heritability are believed to be rare variants and gene-environment interaction (GXE). Thus, detecting GXE where G is a rare haplotype variant (rHTV) is a pressing problem. Haplotype analysis is usually the natural second step to follow up on a genomic region that is implicated to be associated through single nucleotide variants (SNV) analysis. Further, rHTV can tag associated rare SNV and provide greater power to detect them than popular collapsing methods. Recently we proposed Logistic Bayesian LASSO (LBL) for detecting rHTV association with case-control data. LBL shrinks the unassociated (especially common) haplotypes toward zero so that an associated rHTV can be identified with greater power. Here, we incorporate environmental factors and their interactions with haplotypes in LBL. As LBL is based on retrospective likelihood, this extension is not trivial. We model the joint distribution of haplotypes and covariates given the case-control status. We apply the approach (LBL-GXE) to the Michigan, Mayo, AREDS, Pennsylvania Cohort Study on Age-related Macular Degeneration (AMD). LBL-GXE detects interaction of a specific rHTV in CFH gene with smoking. To the best of our knowledge, this is the first time in the AMD literature that an interaction of smoking with a specific (rather than pooled) rHTV has been implicated. We also carry out simulations and find that LBL-GXE has reasonably good powers for detecting interactions with rHTV while keeping the type I error rates well controlled. Thus, we conclude that LBL-GXE is a useful tool for uncovering missing heritability.
    Genetic Epidemiology 01/2014; 38(1). DOI:10.1002/gepi.21773 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.
    Journal of the Royal Statistical Society Series B (Statistical Methodology) 01/2013; 75(1):185-206. DOI:10.1111/j.1467-9868.2012.01052.x · 5.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary analysis of case-control studies focuses on the relationship between disease (D) and a set of covariates of interest (Y,X). A secondary application of the case-control study, often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated due to the case-control sampling, and to avoid the biased sampling that arises from the design, it is typical to use the control data only. In this paper, we develop penalized regression spline methodology that uses all the data, and improves precision of estimation compared to using only the controls. A simulation study and an empirical example are used to illustrate the methodology.
    Statistics in Biosciences 11/2013; DOI:10.1007/s12561-013-9094-9

Full-text (2 Sources)

Available from
Jul 29, 2014