Article

The invasive front in endometrial carcinoma: higher proliferation and associated derailment of cell cycle regulators

Utrecht University, Utrecht, Utrecht, Netherlands
Human Pathlogy (Impact Factor: 2.81). 08/2007; 38(8):1232-8. DOI: 10.1016/j.humpath.2007.01.008
Source: PubMed

ABSTRACT The aim of the study was to explore whether expression of proliferation and hypoxia-related proteins differs in the central parts and the invasive front in endometrial carcinomas. Proliferation-associated proteins Ki67 and cyclin A; cell cycle regulators p16, p21, p53, cyclin D1, cyclin E, and cdk2; and hypoxia-inducible factor 1alpha and its downstream factors glucose transporter 1, carbonic anhydrase IX, and vascular endothelial growth factor were immunohistochemically stained in paraffin-embedded specimens from endometrioid (n = 33), mucinous (n = 1), and serous (n = 5) endometrial carcinomas. The percentages of positive cells at the invasive front and central tumor parts were scored and compared. Ki67 (P < .001), cyclin E (P = .018), p16 (P = .003), and cdk2 (.001) were expressed higher at the invasive front than centrally (Wilcoxon signed ranks test). Higher expression of these antigens at the invasive front was seen in 31 of 38 cases for Ki67, in 16 of 39 cases for cyclin E, in 15 of 39 cases for cdk2, and in 11 of 39 cases for p16. The other cell cycle proteins and the hypoxia-related factors did not show significant differences in expression between the central parts and the invasive front. Endometrial carcinomas clearly show an invasive front that is characterized by higher proliferation and progressive derailment of the cell cycle regulators cyclin E, p16, and cdk2, but not by an increased hypoxic response.

0 Bookmarks
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence has shown that the hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating breast cancer progression and metastasis. The effects of hypoxia-inducible factor 1 (HIF-1), a master regulator of the hypoxic response, have been extensively studied during these processes. In this review, we focus on the roles of HIF-1 in regulating breast cancer cell metastasis, specifically its effects on multiple key steps of metastasis, such as epithelial-mesenchymal transition (EMT), invasion, extravasation, and metastatic niche formation. We also discuss the roles of HIF-1-regulated non-coding RNAs in breast cancer metastasis, and therapeutic opportunities for breast cancer through targeting the HIF-1 pathway.
    Journal of Zhejiang University SCIENCE B 01/2015; 16(1):32-43. DOI:10.1631/jzus.B1400221 · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RPRD1B, the regulation of nuclear pre-mRNA domain containing 1B gene, functions as a cell cycle manipulator and has been found overexpressed in a small panel of endometrial cancer types. In the present study, we investigated the roles of RPRD1B in endometrial cancer using various in vitro and in vivo experiments. According to our results, RPRD1B mRNA was significantly upregulated in endometrial cancer tissues (P=0.0012). RPRD1B overexpression was correlated with tumor stage (P=0.0004), histology type (P=0.0146) and depth of myometrial invasion (P=0.024). In vitro, RPRD1B promoted cellular proliferation (P=0.032 for MTT assay and P=0.018 for colony formation assay), and accelerated the cell cycle (P=0.007) by upregulating cyclin D1, CDK4 and CDK6, while knockdown of RPRD1B suppressed cellular proliferation (P=0.02 for MTT assay and P=0.031 for colony formation assay), and led to G1 phase arrest (P=0.025) through downregulating cyclin D1, CDK4 and CDK6. Consistently, in the nude mice model, RPRD1B overexpression significantly accelerated the tumor xenograft growth (P=0.0012), accompanied by elevated Ki-67 and cyclin D1. In addition, we demonstrated that downregulating RPRD1B could sensitize Ishikawa cells to Raloxifene (P=0.01). In summary, we demonstrated that RPRD1B was frequently overexpressed in human endometrial cancer. Both in vitro and in vivo, over-abundant RPRD1B could promote tumor growth and accelerate cellular cell cycle. In addition, knockdown of RPRD1B also increased cell sensitivity to Raloxifene, making RPRD1B a potent therapeutic target for endometrial cancer, particularly in patients with resistance to the selective ER modulators.
    Oncology Reports 01/2014; 31(3). DOI:10.3892/or.2014.2990 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbonic anhydrase IX (CAIX) which is a zinc containing metalloprotein, efficiently catalyzes the reversible hydration of carbon dioxide. It is constitutively up-regulated in several cancer types and has an important role in tumor progression, acidification and metastasis. High expression of CAIX generally correlates with poor prognosis and is related to a decrease in the disease-free interval following successful therapy. Therefore, it is considered as a prognostic indicator in oncology.In this review, we describe CAIX regulation and its role in tumor hypoxia, acidification and metastasis. In addition, the molecular imaging of CAIX and its potential for use in cancer detection, diagnosis, staging, and for use in following therapy response is discussed. Both antibodies and small molecular weight compounds have been used for targeted imaging of CAIX expression. The use of CAIX expression as an attractive and promising candidate marker for systemic anticancer therapy is also discussed.
    Sub-cellular biochemistry 01/2014; 75:221-54. DOI:10.1007/978-94-007-7359-2_12