Article

Recognition of a defined region within p24 gag by CD8+ T cells during primary human immunodeficiency virus type 1 infection in individuals expressing protective HLA class I alleles.

Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
Journal of Virology (Impact Factor: 4.65). 07/2007; 81(14):7725-31. DOI: 10.1128/JVI.00708-07
Source: PubMed

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-specific immune responses during primary HIV-1 infection appear to play a critical role in determining the ultimate speed of disease progression, but little is known about the specificity of the initial HIV-1-specific CD8(+) T-cell responses in individuals expressing protective HLA class I alleles. Here we compared HIV-1-specific T-cell responses between subjects expressing the protective allele HLA-B27 or -B57 and subjects expressing nonprotective HLA alleles using a cohort of over 290 subjects identified during primary HIV-1 infection. CD8(+) T cells of individuals expressing HLA-B27 or -B57 targeted a defined region within HIV-1 p24 Gag (amino acids 240 to 272) early in infection, and responses against this region contributed over 35% to the total HIV-1-specific T-cell responses in these individuals. In contrast, this region was rarely recognized in individuals expressing HLA-B35, an HLA allele associated with rapid disease progression, or in subjects expressing neither HLA-B57/B27 nor HLA-B35 (P < 0.0001). The identification of this highly conserved region in p24 Gag targeted in primary infection specifically in individuals expressing HLA class I alleles associated with slower HIV-1 disease progression provides a rationale for vaccine design aimed at inducing responses to this region restricted by other, more common HLA class I alleles.

2 Followers
 · 
61 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular immunity is pivotal in HIV-1 pathogenesis, but hampered by viral sequence diversity. An approach to minimize this diversity is to focus immunity on conserved proteome sequences; therefore we selected four relatively conserved regions (Gag amino acids 148-214 and 250-335, Env 521-606, and Nef 106-148), each created in three mosaics to provide better coverage of M-group HIV-1 sequences. A conserved region vaccine (CRV) delivering genes for these four regions as equal mixtures of three mosaics (each region at a separate injection site) was compared to a whole protein vaccine (WPV) delivering equimolar amounts of genes for whole Gag, Env, and Nef as clade B consensus sequences (separate injection sites). Three rhesus macaques were vaccinated via three DNA primes and a recombinant adenovirus-5 boost (weeks 0, 4, 8, and 24 respectively). Although CRV inserts were about a fifth that of WPV, the CRV generated comparable magnitude blood CD4(+) and CD8(+) T lymphocyte responses against Gag, Env, and Nef. WPV responses preferentially targeted proteome areas outside the selected conserved regions in direct proportion to sequence lengths, indicating similar immunogenicities for the conserved regions versus the outside regions. The CRV yielded conserved region targeting density that was approximately five-fold that of the WPV. A similar pattern was seen in bronchoalveolar lymphocytes, but quadruple the magnitudes in blood. Overall, these findings demonstrated that the selected conserved regions are highly immunogenic, and that anatomically isolated vaccinations with these regions focuses immunodominance compared to full-length protein vaccination. IMPORTANCE HIV-1 sequence diversity is a major barrier limiting the capability of cellular immunity to contain infection and the ability of vaccines to match circulating viral sequences. To date, vaccines tested in humans have delivered whole proteins or genes for whole proteins, and it is unclear whether including only conserved sequences would yield sufficient cellular immunogenicity. We tested a vaccine delivering genes for four small conserved HIV-1 regions compared to a control vaccine with genes for whole Gag, Env, and Nef. Although the conserved regions ranged from 43 to 86 amino acids and comprised less than one fifth of whole Gag/Env/Nef, the vaccines elicited equivalent total magnitudes of both CD4(+) and CD8(+) T lymphocyte responses. These data demonstrate immunogenicity of these small conserved regions, and the potential for a vaccine to steer immunodominance towards conserved epitopes.
    Journal of Virology 11/2014; 89(2). DOI:10.1128/JVI.02370-14 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The reproducible nature of HIV-1 escape from HLA-restricted CD8+ T-cell responses allows the identification of HLA-associated viral polymorphisms ¿at the population level¿ ¿ that is, via analysis of cross-sectional, linked HLA/HIV-1 genotypes by statistical association. However, elucidating their timing of selection traditionally requires detailed longitudinal studies, which are challenging to undertake on a large scale. We investigate whether the extent and relative timecourse of immune-driven HIV adaptation can be inferred via comparative cross-sectional analysis of independent early and chronic infection cohorts.ResultsSimilarly-powered datasets of linked HLA/HIV-1 genotypes from individuals with early (median¿<¿3 months) and chronic untreated HIV-1 subtype B infection, matched for size (N¿>¿200/dataset), HLA class I and HIV-1 Gag/Pol/Nef diversity, were established. These datasets were first used to define a list of 162 known HLA-associated polymorphisms detectable at the population level in cohorts of the present size and host/viral genetic composition. Of these 162 known HLA-associated polymorphisms, 15% (occurring at 14 Gag, Pol and Nef codons) were already detectable via statistical association in the early infection dataset at p¿¿¿0.01 (q¿<¿0.2) ¿ identifying them as the most consistently rapidly escaping sites in HIV-1. Among these were known rapidly-escaping sites (e.g. B*57-Gag-T242N) and others not previously appreciated to be reproducibly rapidly selected (e.g. A*31:01-associated adaptations at Gag codons 397, 401 and 403). Escape prevalence in early infection correlated strongly with first-year escape rates (Pearson¿s R¿=¿0.68, p¿=¿0.0001), supporting cross-sectional parameters as reliable indicators of longitudinally-derived measures. Comparative analysis of early and chronic datasets revealed that, on average, the prevalence of HLA-associated polymorphisms more than doubles between these two infection stages in persons harboring the relevant HLA (p¿<¿0.0001, consistent with frequent and reproducible escape), but remains relatively stable in persons lacking the HLA (p¿=¿0.15, consistent with slow reversion). Published HLA-specific Hazard Ratios for progression to AIDS correlated positively with average escape prevalence in early infection (Pearson¿s R¿=¿0.53, p¿=¿0.028), consistent with high early within-host HIV-1 adaptation (via rapid escape and/or frequent polymorphism transmission) as a correlate of progression.Conclusion Cross-sectional host/viral genotype datasets represent an underutilized resource to identify reproducible early pathways of HIV-1 adaptation and identify correlates of protective immunity.
    Retrovirology 08/2014; 11(1):64. DOI:10.1186/PREACCEPT-8878001841312932 · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The live attenuated simian immunodeficiency virus (LASIV) vaccine SIVΔnef is one of the most effective vaccines in inducing protection against wild-type lentiviral challenge, yet little is known about the mechanisms underlying its remarkable protective efficacy. Here, we exploit deep sequencing technology and comprehensive CD8 T cell epitope mapping to deconstruct the CD8 T cell response, to identify the regions of immune pressure and viral escape, and to delineate the effect of epitope escape on the evolution of the CD8 T cell response in SIVΔnef-vaccinated animals. We demonstrate that the initial CD8 T cell response in the acute phase of SIVΔnef infection is mounted predominantly against more variable epitopes, followed by widespread sequence evolution and viral escape. Furthermore, we show that epitope escape expands the CD8 T cell repertoire that targets highly conserved epitopes, defined as anentropic specificity, and generates de novo responses to the escaped epitope variants during the vaccination period. These results correlate SIVΔnef-induced protection with expanded anentropic specificity and increased response depth. Importantly, these findings render SIVΔnef, long the gold standard in HIV/SIV vaccine research, as a proof-of-concept vaccine that highlights the significance of the twin principles of anentropic specificity and repertoire depth in successful vaccine design.
    PLoS Pathogens 02/2015; 11(2):e1004633. DOI:10.1371/journal.ppat.1004633 · 8.06 Impact Factor

Full-text (2 Sources)

Download
17 Downloads
Available from
May 17, 2014