Article

Potential of intestinal electrical stimulation for obesity: a preliminary canine study.

Veterans Research and Education Foundation, Veterans Administration Medical Center, Oklahoma City, Oklahoma, USA.
Obesity (Impact Factor: 3.92). 05/2007; 15(5):1133-8. DOI: 10.1038/oby.2007.615
Source: PubMed

ABSTRACT The aims of this study were to investigate the therapeutic potential of intestinal electrical stimulation (IES) for obesity. Experiments were performed to investigate the effects of IES on food intake, gastric tone, gastric accommodation, and its possible pathway.
Ten normal dogs and six dogs with truncal vagotomy were used in this study. Each dog was equipped with a gastric cannula for the measurement of gastric tone and accommodation by barostat and one pair of duodenal serosal electrodes for IES. The experiment on food intake was composed of both control session without IES and IES session after a 28-hour fast. The experiment on gastric tone and accommodation was performed in the fasting and fed states and composed of three sessions: control, IES, and IES with N(G)-nitro-l-arginine.
IES significantly reduced food intake in the normal dogs (459.0 vs. 312.6 grams, p < 0.001). The food intake was negatively correlated with the fasting gastric volume during IES. IES significantly decreased fasting gastric tone in the normal dogs reflected as a decrease in gastric volume (89.1 vs. 261.3 mL, p < 0.01), which was abolished by vagotomy and N(G)-nitro-l-arginine.
IES reduces food intake and inhibits gastric tone in the fasting state. The inhibitory effect of IES on gastric tone is mediated by both vagal and nitrergic pathway.

0 Bookmarks
 · 
44 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aims were to investigate the energy-dose response effect of intestinal electrical stimulation (IES) on small bowel motility, to compare the effect of forward and backward IES, and to explore the possibility of using intermittent IES and mechanism of IES on intestinal motility. Five dogs implanted with a duodenal cannula and one pair of intestinal serosal electrodes were studied in five sessions: 1) energy-dose response study; 2) forward IES; 3) backward IES; 4) intermittent IES vs. continuous IES; 5) administration of guanethidine. The contractile activity and tonic pressure of the small intestine were recorded. The duration of sustained effect after turning off IES was manually calculated. 1) IES with long pulse energy dose dependently inhibited contractile activity and tonic pressure of the small intestine (p < 0.001). 2) The duration of sustained inhibitory effect of IES on the small intestine depended on the energy of IES delivered (p < 0.001). 3) The potency of the inhibitory effect was the same between forward and backward IES. 4) The efficacy of intermittent IES was the same as continuous IES in inhibiting motility of the small intestine. 5) Guanethidine blocked the inhibitory effect of IES on intestinal motility. IES with long pulses inhibits small intestinal motility; the effect is energy-dose dependent, diffused, and sustained. Intermittent IES has the same efficacy as the continuous IES in inhibiting small intestinal motility. Forward and backward IES have similar inhibitory effects on small bowel motility. This IES-induced inhibitory effect is mediated via the sympathetic pathway.
    Neuromodulation 08/2013; · 1.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Increases in L-cell release of GLP-1 are proposed to serve as a negative feedback signal for postprandial changes in gastric emptying and/or motility. Previous ex vivo data suggests that direct electrical stimulation (E-stim) of ileal segments stimulates secretion of GLP-1. This suggests potential feed-forward increases in GLP-1 driven by intestinal neuronal and/or motor activity. METHODS: To determine if E-stim could increase GLP-1 levels in an in vivo setting, we administered E-stim and nutrients to male Long- Evans rats (300-350 g) under general anesthesia. KEY RESULTS: Nutrient infusion into the duodenum or ileum significantly increased plasma GLP-1 levels, but E-stim applied to these locations did not (P < 0.05). However, the combination of E-stim and nutrient infusion, in either the ileum or duodenum, significantly increased plasma GLP-1 when compared to nutrient infusion alone (P < 0.05), and this effect was not blocked by either norepinephrine or atropine. To test the impact of intestinal motor activity, the effect of extra-luminal mechanical stimulation (M-stim) on GLP-1 levels was assessed. In the duodenum, but not the ileum, M-stim plus nutrient infusion significantly increased GLP-1 over nutrient infusion or M-stim alone (P < 0.05). CONCLU-SIONS & INFERENCES: Thus, both E- and M-stim of the duodenum, but only E-stim of the ileum augmented nutrient-stimulated GLP-1 release. These data demonstrate that factors beyond enteral nutrients could contribute to the regulation of GLP-1 secretion.
    Neurogastroenterology and Motility 05/2013; · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motilitone(®) (DA-9701) is a new herbal drug that was launched for the treatment of functional dyspepsia in December 2011 in Korea. The heterogeneous symptom pattern and multiple causes of functional dyspepsia have resulted in multiple drug target strategies for its treatment. DA-9701, a compound consisting of a combination of Corydalis Tuber and Pharbitidis Semen, has being developed for treatment of functional dyspepsia. It has multiple mechanisms of action such as fundus relaxation, visceral analgesia, and prokinetic effects. Furthermore, it was found to significantly enhance meal-induced gastric accommodation and increase gastric compliance in dogs. DA-9701 also showed an analgesic effect in rats with colorectal distension induced visceral hypersensitivity and an antinociceptive effect in beagle dogs with gastric distension-induced nociception. The pharmacological effects of DA-9701 also include conventional effects, such as enhanced gastric emptying and gastrointestinal transit. The safety profi le of DA-9701 is also preferable to that of other treatments.
    Biomolecules and Therapeutics 05/2013; 21(3):181-189. · 0.79 Impact Factor