Article

Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication.

Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
Nature Immunology (Impact Factor: 24.97). 07/2007; 8(6):569-77. DOI: 10.1038/ni1470
Source: PubMed

ABSTRACT DC-SIGN, a C-type lectin expressed on dendritic cells (DCs), can sequester human immunodeficiency virus (HIV) virions in multivesicular bodies. Here, using large-scale gene expression profiling and tyrosine-phosphorylated proteome analyses, we characterized signaling mediated by DC-SIGN after activation by either HIV or a DC-SIGN-specific antibody. Activation of DC-SIGN resulted in downregulation of genes encoding major histocompatibility complex class II, Jagged 1 and interferon-response molecules and upregulation of the gene encoding transcription factor ATF3. Phosphorylated proteome analysis showed that HIV- or antibody-stimulated DC-SIGN signaling was mediated by the Rho guanine nucleotide-exchange factor LARG and led to increased Rho-GTPase activity. Activation of LARG in DCs exposed to HIV was required for the formation of virus-T cell synapses. Thus, HIV sequestration by and stimulation of DC-SIGN helps HIV evade immune responses and spread to cells.

0 Bookmarks
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology. Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line. Notably, the method can identify not only differentially expressed key hub genes but also non-differentially expressed, critical, ‘hidden’ regulators. Six out of the 13 predicted major hidden key regulators were among the landscape of proteins known to interact with HIV. Several sub-networks were dysregulated upon chronic infection with SIV. Most prominently, factors reported to be engaged in early stages of acute viral infection were affected, e.g. entry, integration and provirus transcription and other cellular responses such as apoptosis and proliferation were modulated. For experimental validation of the gene expression analyses and computational predictions, individual pathways/sub-networks and significantly altered key regulators were investigated further. We showed that the expression of caveolin-1 (Cav-1), the top hub in the affected protein-protein interaction network, was significantly upregulated in chronically SIV-infected CD4+ T cells. Cav-1 is the main determinant of caveolae and a central component of several signal transduction pathways. Furthermore, CD4 downregulation and modulation of the expression of alternate and co-receptors as well as pathways associated with viral integration into the genome were also observed in these cells. Putatively, these modifications interfere with re-infection and the early replication cycle and inhibit cell death provoked by syncytia formation and bystander apoptosis. Thus, by using the novel approach for network analysis, ICF, we predict that in the T cell line chronically infected with SIV, cellular processes that are known to be crucial for early phases of HIV /SIV replication are altered and cellular responses that result in cell death are modulated. These modifications presumably contribute to cell survival despite chronic infection.
    Virology Journal 08/2014; 11:152. DOI:10.1186/1743-422X-11-152 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among myeloid immune receptors, C-type lectin receptors (CLRs) have a remarkable capacity to sense a variety of self and non-self ligands. The coupling of CLRs to different signal transduction modules is influenced not only by the receptor, but also by the nature, density and architecture of the ligand, which can affect the rate of receptor internalization and trafficking to diverse intracellular compartments. Understanding how the variety of self and non-self ligands triggers differential CLR signalling and function presents a fascinating biological challenge. Non-self ligands usually promote inflammation and immunity, whereas self ligands are frequently involved in communication and tolerance. But pathogens can mimic self-inhibitory signals to escape immune surveillance, and endogenous ligands can contribute to the sensing of pathogens through CLRs. In this review, we survey the complexity and flexibility in functional outcome found in the myeloid CLRs, which is not only based on their differing intracellular motifs, but is also conditioned by the physical nature, affinity and avidity of the ligand.
    Immunobiology 09/2014; 220(2). DOI:10.1016/j.imbio.2014.09.013 · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TLRs 7 and 8 are pattern recognition receptors controlling antiviral host defense or autoimmune diseases. Apart from foreign and host RNA, synthetic RNA oligoribonucleotides (ORN) or small molecules of the imidazoquinoline family activate TLR7 and 8 and are being developed as therapeutic agonists. The structure-function relationships for RNA ORN and imidazoquinoline sensing and consequent downstream signaling by human TLR7 and TLR8 are unknown. Proteome- and genome-wide analyses in primary human monocyte-derived dendritic cells here showed that TLR8 sensing of RNA ORN versus imidazoquinoline translates to ligand-specific differential phosphorylation and transcriptional events. In addition, TLR7 and 8 ectodomains were found to discriminate between RNA ORN and imidazoquinolines by overlapping and nonoverlapping recognition sites to which murine loss-of-function mutations and human naturally occurring hyporesponsive polymorphisms map. Our data suggest TLR7 and TLR8 can signal in two different "modes" depending on the class of ligand. Considering RNA ORN and imidazoquinolines have been regarded as functionally interchangeable, our study highlights important functional incongruities whose understanding will be important for developing TLR7 or 8 therapeutics with desirable effector and safety profiles for in vivo application.
    The Journal of Immunology 05/2014; 192(12). DOI:10.4049/jimmunol.1303058 · 5.36 Impact Factor

Full-text (2 Sources)

Download
22 Downloads
Available from
Jun 10, 2014