Double-lanthanide-binding tags: design, photophysical properties, and NMR applications.

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Journal of the American Chemical Society (Impact Factor: 10.68). 07/2007; 129(22):7106-13. DOI:10.1021/ja070480v
Source: PubMed

ABSTRACT Lanthanide-binding tags (LBTs) are peptide sequences of up to 20 encoded amino acids that tightly and selectively complex lanthanide ions and can sensitize terbium (Tb3+) luminescence. On the basis of these properties, it was predicted that increasing the number of bound lanthanides would improve the capabilities of these tags. Therefore, using a structurally well-characterized single-LBT sequence as a starting point, a "double-LBT" (dLBT), which concatenates two lanthanide-binding motifs, was designed. Herein we report the generation of dLBT peptides and luminescence and NMR studies on a dLBT-tagged ubiquitin fusion protein. These lanthanide-bound constructs are shown to be improved luminescent tags with avid lanthanide binding and up to 3-fold greater luminescence intensity. NMR experiments were conducted on the ubiquitin construct, wherein bound paramagnetic lanthanides were used as alignment-inducing agents to gain residual dipolar couplings, which are valuable restraints for macromolecular structure determination. Together, these results indicate that dLBTs will be valuable chemical tools for biophysical applications leading to new approaches for studying the structure, function, and dynamics of proteins.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: The anisotropic component of the magnetic susceptibility tensor (Δχ tensor) associated with various paramagnetic metal ions can induce pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) in proteins, yielding valuable restraints in structural studies. In particular, PCSs have successfully been used to study ligands that bind to proteins tagged with a paramagnetic metal ion, which is of great interest in fragment-based drug design. To create easy-to-interpret PCSs, the metal ion must be attached to the protein in a rigid manner. Most of the existing methods for site-specific attachment of a metal tag, however, result in tethers with residual flexibility. Here we present model calculations to quantify the extent, to which mobility of the metal-binding tag can compromise the quality of the Δχ tensor that can be determined from the PCSs observed in the protein. Assuming that the protein can be approximated by a sphere and the tag is attached by a single tether, the results show that a single effective ∆χ tensor can describe the PCSs and RDCs of the protein spins very well even in the presence of substantial tag mobility, implying that PCSs of ligands in binding pockets of the protein can be predicted with similar accuracy. In contrast, the quality of the PCS prediction for nuclear spins positioned above the surface of the protein is significantly poorer, with implications for studies of protein-protein complexes. The simulations probed the sensitivity of the effective Δχ tensor to different parameters, including length of the tether between protein and metal ion, protein size, type and amplitude of tag motion, tensor orientation relative to the protein and direction of tag motion. Tether length and amplitude of motion were identified as two key parameters. It is shown that the amplitude of tag motions cannot be quantified by simple comparisons of the effective Δχ tensor with the alignment tensor determined from RDCs.
    Journal of Biomolecular NMR 05/2013; · 2.85 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The previously published IDA-SH and NTA-SH tags are small synthetic lanthanide-binding tags derived from cysteine, which afford site-specific lanthanide labelling by disulfide-bond formation with a cysteine residue of the target protein. Following attachment to a single cysteine in an α-helix, sizeable pseudocontact shifts (PCS) can be observed, if the lanthanide is immobilized by additional coordination to a negatively charged amino-acid side chain that is located in a neighboring turn of the helix. To identify the best labelling strategy for PCS measurements, we performed a systematic study, where IDA-SH or NTA-SH tags were ligated to a cysteine residue in position i of an α-helix, and aspartate or glutamate residues were placed in the positions i - 4 or i + 4. The largest anisotropy components of the magnetic susceptibility tensor were observed for an NTA-SH tag in position i with a glutamate residue in position i - 4. While the NTA-SH tag produced sizeable PCSs regardless of the presence of nearby carboxyl groups of the protein, the IDA-SH tag generated a good lanthanide binding site only if an aspartate was placed in position i + 4. The findings provide a firm basis for the design of site-directed mutants that are suitable for the reliable generation of PCSs in proteins with paramagnetic lanthanides.
    Journal of Biomolecular NMR 12/2012; · 2.85 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Chemokines are chemotactic cytokines comprised of 70-100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies. Here, we describe methods for the expression, refolding, purification, and functional characterization of CXCL12 and CCL5 constructs incorporating C-terminal epitope tags. The model tags used were hexahistidines and Strep-Tag for affinity purification, and the double lanthanoid binding tag for fluorescence imaging and crystal structure resolution. The ability of modified and purified chemokines to bind and activate CXCR4 and CCR5 receptors was tested in Xenopus oocytes expressing the receptors, together with a Kir3 G-protein activated K(+) channel that served as a reporter of receptor activation. Results demonstrate that tags greatly influence the biochemical properties of the recombinant chemokines. Besides, despite the absence of any evidence for CXCL12 or CCL5 C-terminus involvement in receptor binding and activation, we demonstrated unpredictable effects of tag insertion on the ligand apparent affinity and efficacy or on the ligand dissociation. These tagged chemokines should constitute useful tools for the selective purification of properly-folded chemokines receptors and the study of their native quaternary structures.
    PLoS ONE 01/2014; 9(1):e87394. · 3.73 Impact Factor