Study of saturation of CR39 nuclear track detectors at high ion fluence and of associated artifact patterns

Department of Physics, University of Nevada, Reno, Reno, Nevada, United States
Review of Scientific Instruments (Impact Factor: 1.58). 02/2007; 78(1):013304. DOI: 10.1063/1.2400020
Source: PubMed

ABSTRACT The occurrence of saturation in CR39 solid state nuclear track detectors has been systematically studied as a function of the incident ion (alpha particles and laser-accelerated protons) fluence and the etching time. When overexposed (i.e., for fluences above approximately 10(8) particles/cm(2)) and/or overetched, the CR39 detectors enter a saturated regime where direct track counting is not possible anymore. In this regime, optical measurements of saturated CR39 detectors become unreliable as well, since the optical response of the saturated detectors with respect to the ion fluence is highly nonlinear. This nonlinear optical response is likely due to scattering from the surface of irregular clumping patterns which have a diameter approximately 20 microm, i.e., ten times larger than the diameter of individual tracks. These patterns, which aggregate many individual tracks, are observed to develop in highly saturated regimes. For fluences typical of high energy short pulse laser experiments, saturation occurs, inducing the appearance of artifact ringlike structures. By careful microscopic analysis, these artifact ring patterns can be distinguished from the genuine rings occurring below saturation and characteristic of low energy laser accelerated proton beams.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 106 cm−2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount.
    Review of Scientific Instruments 04/2014; 85(4):043302-043302-7. DOI:10.1063/1.4870898 · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D3He-, D2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 102 for obtaining the spectral shape, and by 103 for mean energy (ρR) measurement, corresponding to proton fluences of 108 and 109 cm-2, respectively. Using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ̃108 and ̃1012, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±̃10 mg/cm2.
    Review of Scientific Instruments 10/2014; 85(11). DOI:10.1063/1.4892439 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During space travel, astronauts are exposed to cosmic radiation that is comprised of high-energy nuclear particles. Cancer patients are also exposed to high-energy nuclear particles when treated with proton and carbon beams. Nuclear interactions from high-energy particles traversing shielding materials and tissue produce low-energy (<10 MeV/n) secondary particles of high-LET that contribute significantly to overall radiation exposures. Track structure theories suggest that high charge and energy (HZE) particles and low-energy secondary ions of similar LET will have distinct biological effects for cellular and tissue damage endpoints. We investigated the biological effects of low-energy ions of high LET utilizing the Tandem Van de Graaff accelerator at the Brookhaven National Laboratory (BNL), and compared these to experiments with HZE particles, that mimic the space environment produced at NASA Space Radiation Laboratory (NSRL) at BNL. Immunostaining for DNA damage response proteins was carried out after irradiation with 5.6 MeV/n boron ions (LET 205 keV/μm), 5.3 MeV/n silicon ions (LET 1241 keV/μm), 600 MeV/n Fe ions (LET 180 keV/μm) and 77 MeV/n oxygen ions (LET 58 keV/μm) particles. Low-energy ions caused more persistent DNA damage response (DDR) protein foci in irradiated human fibroblasts and esophageal epithelial cells compared to HZE particles. More detailed studies comparing boron ions to Fe particles, showed that boron-ion radiation resulted in a stronger G2 delay compared to Fe-particle exposure, and boron ions also showed an early recruitment of Rad51 at double-strand break (DSB) sites, which suggests a preference of homologous recombination for DSB repair in low-energy albeit high-LET particles. Our experiments suggest that the deposition of very high-energy radiation by low-energy ions, representative of galactic cosmic radiation and solar particle event secondary radiation, generates massive but localized DNA damage leading to delayed DSB repair, and distinct cellular responses from HZE particles. Thus, low-energy heavy ions provide a valuable probe for studies of homologous recombination repair in radiation responses.
    Radiation Research 08/2014; 182(3). DOI:10.1667/RR13747.1 · 2.45 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014