Development of a guarded liquid ionization chamber for clinical dosimetry

Medical Physics Unit, Montreal General Hospital, Montreal, Canada.
Physics in Medicine and Biology (Impact Factor: 2.92). 07/2007; 52(11):3089-104. DOI: 10.1088/0031-9155/52/11/011
Source: PubMed

ABSTRACT Liquid ionization chambers are considered superior to air-filled chambers in terms of size, energy dependence and perturbation effects. We constructed and tested a liquid ionization chamber for clinical dosimetry, the GLIC-03, with a sensitive volume of approximately 2 mm3. We also examined two methods to correct for general ion recombination in pulsed photon beams: that of Johansson et al, which modifies Boag's theory for recombination in gases, and an empirical method relating recombination to dose per pulse. The second method can be used even in cases where the first method is not applicable. The response of the GLIC-03 showed a stable, linear and reproducible decrease of 1% over 10 h. The liquid-filled GLIC-03 had a 1.1 +/- 0.4% energy dependence while that of the air-filled GLIC-03 was 2.1 +/- 0.3% between the 6 and 18 MV beams from a Clinac 21EX. The two methods for recombination correction agreed within 0.2% for measurements at 18 MV, 700 V, 100 MU min(-1). Measurements with the GLIC-03 in Solid Water in the build-up region of an 18 MV beam agreed with extrapolation chamber measurements within 1.4%, indicating that the GLIC-03 causes minimal perturbation.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of liquid ionization chambers in radiotherapy has grown during the past few years. While for air ionization chambers the kTP correction for air mass density due to pressure and temperature variations is well known, less work has been done on the case of liquid ionization chambers, where there is still the need to take into account the influence of temperature in the free ion yield. We have measured the PTW microLion isooctane-filled ionization chamber temperature dependence in a ∼ ±10 °C interval around the standard 20 °C room temperature for three operation voltages, including the manufacturer recommended voltage, and two beam qualities, (60)Co and 50 kV x-rays. Within the measured temperature range, the microLion signal exhibits a positive linear dependence, which is around 0.24% K(-1) at 800 V with (60)Co irradiation. This effect is of the same order of magnitude as the T dependence found in air ionization chambers, but its nature is completely different and its sign opposite to that of an air chamber. Onsager theory has been used to model the results and is consistent with this linear behaviour. However, some inconsistencies in the modelling of the 50 kV x-ray results have been found that are attributed to the failure of Onsager's isolated pair assumption for such radiation quality.
    Physics in Medicine and Biology 05/2014; 59(11):2705-2712. DOI:10.1088/0031-9155/59/11/2705 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analytical extension of Greening and Boag theories to multiple charge carriers. Detailed numerical study of process of volume recombination in LICs. Recombination in pulsed beams is independent of number and mobilities of carriers. Multiple charge carriers have a significant effect in continuous beams. a b s t r a c t Liquid-filled ionisation chambers (LICs) are used in radiotherapy for dosimetry and quality assurance. Volume recombination can be quite important in LICs for moderate dose rates, causing non-linearities in the dose rate response of these detectors, and needs to be corrected for. This effect is usually described with Greening and Boag models for continuous and pulsed radiation respectively. Such models assume that the charge is carried by two different species, positive and negative ions, each of those species with a given mobility. However, LICs operating in non-ultrapure mode can contain different types of electronegative impurities with different mobilities, thus increasing the number of different charge carriers. If this is the case, Greening and Boag models can be no longer valid and need to be reformulated. In this work we present a theoretical and numerical study of volume recombination in parallel-plate LICs with multiple charge carrier species, extending Boag and Greening models. Results from a recent publication that reported three different mobilities in an isooctane-filled LIC have been used to study the effect of extra carrier species on recombination. We have found that in pulsed beams the inclusion of extra mobilities does not affect volume recombination much, a behaviour that was expected because Boag formula for charge collection efficiency does not depend on the mobilities of the charge carriers if the Debye relationship between mobilities and recombination constant holds. This is not the case in continuous radiation, where the presence of extra charge carrier species significantly affects the amount of volume recombination.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most modern radiation therapy devices allow the use of very small fields, either through beamlets in Intensity-Modulated Radiation Therapy (IMRT) or via stereotactic radiotherapy where positioning accuracy allows delivering very high doses per fraction in a small volume of the patient. Dosimetric measurements on medical accelerators are conventionally realized using air-filled ionization chambers. However, in small beams these are subject to nonnegligible perturbation effects. This study focuses on liquid ionization chambers, which offer advantages in terms of spatial resolution and low fluence perturbation. Ion recombination effects are investigated for the microLion detector (PTW) used with the Cyberknife system (Accuray). The method consists of performing a series of water tank measurements at different source-surface distances, and applying corrections to the liquid detector readings based on simultaneous gaseous detector measurements. This approach facilitates isolating the recombination effects arising from the high density of the liquid sensitive medium and obtaining correction factors to apply to the detector readings. The main difficulty resides in achieving a sufficient level of accuracy in the setup to be able to detect small changes in the chamber response.
    Journal of Visualized Experiments 01/2014; DOI:10.3791/51296

Full-text (2 Sources)

Available from
May 21, 2014