Development of a guarded liquid ionization chamber for clinical dosimetry.

Medical Physics Unit, Montreal General Hospital, Montreal, Canada.
Physics in Medicine and Biology (Impact Factor: 2.92). 07/2007; 52(11):3089-104. DOI: 10.1088/0031-9155/52/11/011
Source: PubMed

ABSTRACT Liquid ionization chambers are considered superior to air-filled chambers in terms of size, energy dependence and perturbation effects. We constructed and tested a liquid ionization chamber for clinical dosimetry, the GLIC-03, with a sensitive volume of approximately 2 mm3. We also examined two methods to correct for general ion recombination in pulsed photon beams: that of Johansson et al, which modifies Boag's theory for recombination in gases, and an empirical method relating recombination to dose per pulse. The second method can be used even in cases where the first method is not applicable. The response of the GLIC-03 showed a stable, linear and reproducible decrease of 1% over 10 h. The liquid-filled GLIC-03 had a 1.1 +/- 0.4% energy dependence while that of the air-filled GLIC-03 was 2.1 +/- 0.3% between the 6 and 18 MV beams from a Clinac 21EX. The two methods for recombination correction agreed within 0.2% for measurements at 18 MV, 700 V, 100 MU min(-1). Measurements with the GLIC-03 in Solid Water in the build-up region of an 18 MV beam agreed with extrapolation chamber measurements within 1.4%, indicating that the GLIC-03 causes minimal perturbation.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most modern radiation therapy devices allow the use of very small fields, either through beamlets in Intensity-Modulated Radiation Therapy (IMRT) or via stereotactic radiotherapy where positioning accuracy allows delivering very high doses per fraction in a small volume of the patient. Dosimetric measurements on medical accelerators are conventionally realized using air-filled ionization chambers. However, in small beams these are subject to nonnegligible perturbation effects. This study focuses on liquid ionization chambers, which offer advantages in terms of spatial resolution and low fluence perturbation. Ion recombination effects are investigated for the microLion detector (PTW) used with the Cyberknife system (Accuray). The method consists of performing a series of water tank measurements at different source-surface distances, and applying corrections to the liquid detector readings based on simultaneous gaseous detector measurements. This approach facilitates isolating the recombination effects arising from the high density of the liquid sensitive medium and obtaining correction factors to apply to the detector readings. The main difficulty resides in achieving a sufficient level of accuracy in the setup to be able to detect small changes in the chamber response.
    Journal of Visualized Experiments 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To study experimentally the general ion recombination effect in a liquid-filled ionization chamber (LIC) in high-energy photon beams.Methods: The general ion recombination effect on the response of a micro liquid ion chamber (microLion) was investigated with a 6 MV photon beam in normal and SRS modes produced from a Varian(®) Novalis Tx(TM) linear accelerator. Dose rates of the linear accelerator were set to 100, 400, and 1000 MU∕min, which correspond to pulse repetition frequencies of 60, 240, and 600 Hz, respectively. Polarization voltages applied to the microLion were +800 and +400 V. The relative collection efficiency of the microLion response as a function of dose per pulse was experimentally measured with changing polarization voltage and pulse repetition frequencies and was compared with the theoretically calculated value.Results: For the 60 Hz pulse repetition frequency, the experimental relative collection efficiency was not different from the theoretical one for a pulsed beam more than 0.3% for both polarization voltages. For a pulsed radiation beam with a higher pulse repetition frequency, the experimental relative collection efficiency converged to the theoretically calculated efficiency for continuous beams. This result indicates that the response of the microLion tends toward the response to a continuous beam with increasing pulse repetition frequency of a pulsed beam because of low ion mobility in the liquid.Conclusions: This work suggests an empirical method to correct for differences in general ion recombination of a LIC between different radiation fields. More work is needed to quantitatively explain the LIC general ion recombination behavior in pulsed beams generated from linear accelerators.
    Medical Physics 06/2013; 40(6):062104. · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liquid ionization chambers (LICs) offer an interesting tool in the field of small beam dosimetry, allowing better spatial resolution and reduced perturbation effects. However, some aspects remain to be addressed, such as the higher recombination and the effects from the materials of the detector. Our aim was to investigate these issues and their impact. The first step was the evaluation of the recombination effects. Measurements were performed at different SSDs to vary the dose per pulse, and the collection efficiency was obtained. The BEAMnrc code was then used to model the Cyberknife head. Finally, the liquid ionization chamber itself was modelled using the EGSnrc-based code Cavity allowing the evaluation of the influence of the volume and the chamber materials. The liquid ionization charge collection efficiency is approximately 0.98 at 1.5 mGy pulse(-1), the highest dose per pulse that we have measured. Its impact on the accuracy of output factors is less than half a per cent. The detector modelling showed a significant contribution from the graphite electrode, up to 6% for the 5 mm collimator. The dependence of the average electronic mass collision stopping power of iso-octane with beam collimation is negligible and thus has no influence on output factor measurements. Finally, the volume effect reaches 5% for the small 5 mm collimator and becomes much smaller (<0.5%) for diameters above 10 mm. LICs can effectively be used for small beam relative dosimetry as long as adequate correction factors are applied, especially for the electrode and volume effects.
    Physics in Medicine and Biology 03/2013; 58(8):2445-2459. · 2.92 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014