Periaqueductal gray metabotropic glutamate receptor subtype 7 and 8 mediate opposite effects on amino acid release, rostral ventromedial medulla cell activities, and thermal nociception

Dept of Experimental Medicine, Sect of Pharmacology L Donatelli, Faculty of Medicine and Surgery, Second University of Naples, Via Constantinopoli, Naples, Italy.
Journal of Neurophysiology (Impact Factor: 3.04). 08/2007; 98(1):43-53. DOI: 10.1152/jn.00356.2007
Source: PubMed

ABSTRACT The current study has investigated the involvement of periaqueductal gray (PAG) metabotropic glutamate subtype 7 and 8 receptors (mGluR(7) and mGluR(8)) in modulating rostral ventromedial medulla (RVM) ongoing and tail flick-related on and off cell activities. Our study has also investigated the role of PAG mGluR(7) on thermoceptive threshold and PAG glutamate and GABA release. Intra-ventrolateral PAG (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG (2 and 4 nmol/rat)] or N,N(I)-dibenzhydrylethane-1,2-diamin dihydrochloride (AMN082, (1 and 2 nmol/rat), selective mGluR(8) and mGluR(7) agonists, respectively, caused opposite effects on the ongoing RVM on and off cell activities. Tail flick latency was increased or decreased by (S)-3,4-DCPG or AMN082 (2 nmol/rat), respectively. (S)-3,4-DCPG reduced the pause and delayed the onset of the off cell pause. Conversely, AMN082 increased the pause and shortened the onset of off cell pause. (S)-3,4-DCPG or AMN082 did not change the tail flick-induced onset of on-cell peak firing. The tail flick latency and its related electrophysiological effects induced by (S)-3,4-DCPG or AMN082 were prevented by (RS)-alpha-methylserine-o-phosphate (100 nmol/rat), a group III mGluR antagonist. Intra-ventrolateral PAG perfusion with AMN082 (10 and 25 microM), decreased thermoceptive thresholds and glutamate extracellular levels. A decrease in GABA release was also observed. These results show that stimulation of PAG mGluR(8) or mGluR(7) could either relieve or worsen pain perception. The opposite effects on pain behavior correlate with the opposite roles played by mGluR(7) and mGluR(8) on glutamate and GABA release and the ongoing and tail flick-related activities of the RVM on and off cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts neuromodulatory actions via the activation of metabotropic glutamate (mGlu) receptors. There are eight known mGlu receptor subtypes (mGlu1-8), which are widely expressed throughout the brain, and are divided into three groups (I-III), based on signalling pathways and pharmacological profiles. Group III mGlu receptors (mGlu4/6/7/8) are primarily, although not exclusively, localised on presynaptic terminals, where they act as both auto- and hetero-receptors, inhibiting the release of neurotransmitter. Until recently, our understanding of the role of individual group III mGlu receptor subtypes was hindered by a lack of subtype-selective pharmacological tools. Recent advances in the development of both orthosteric and allosteric group III-targeting compounds, however, have prompted detailed investigations into the possible functional role of these receptors within the CNS, and revealed their involvement in a number of pathological conditions, such as epilepsy, anxiety and Parkinson's disease. The heterogeneous expression of group III mGlu receptor subtypes throughout the brain, as well as their distinct distribution at glutamatergic and GABAergic synapses, makes them ideal targets for therapeutic intervention. This review summarises the advances in subtype-selective pharmacology, and discusses the individual roles of group III mGlu receptors in physiology, and their potential involvement in disease.
    Neurochemical Research 08/2014; DOI:10.1007/s11064-014-1415-y · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was carried out to study the role of metabotropic glutamate receptor 7 (mGluR7) using its agonist, N,N'-bis(diphenylmethyl)-1,-ethanediamine (AMN082) for nociceptive stimuli, in animal models. By conducting this research, we aim to introduce a novel target for acute pain management.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although numerous studies demonstrated a neuroprotective potency of unspecific group III mGluR agonists in in vitro and in vivo models of excitotoxicity, little is known about the protective role of group III mGlu receptor activation against neuronal cell injury evoked by ischemic conditions. The aim of the present study was to assess neuroprotective potential of the allosteric agonist of mGlu7 receptor, N,N'-Bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082) against oxygen-glucose deprivation (OGD)- and kainate (KA)-evoked neuronal cell damage in primary neuronal cultures, with special focus on its efficacy after delayed application. We demonstrated that in cortical neuronal cultures exposed to a 180 min OGD, AMN082 (0.01-1 µM) in a concentration- and time-dependent way attenuated the OGD-induced changes in the LDH release and MTT reduction assays. AMN082 (0.5 and 1 µM) produced also neuroprotective effects against KA-evoked neurotoxicity both in cortical and hippocampal cultures. Of particular importance was the finding that AMN082 attenuated excitotoxic neuronal injury after delayed application (30 min after OGD, or 30 min-1h after KA). In both models of neurotoxicity, namely-, OGD- and KA-induced injury, the neuroprotective effects of AMN082 (1 µM) were reversed by the selective mGlu7 antagonist, 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride (MMPIP, 1 µM) suggesting the mGlu7-dependent mechanism of neuroprotective effects of AMN082. Next, we showed that AMN082 (0.5 and 1 µM) attenuated the OGD-induced increase in the number of necrotic nuclei as well inhibited the OGD-evoked calpain activation, suggesting the participation of these processes in the mechanism of AMN082-mediated protection. Additionally, we showed that protection evoked by AMN082 (1 µM) in KA model was connected with the inhibition of toxin-induced caspase-3 activity, and this effect was abolished by the mGlu7 receptor antagonist. The obtained results indicated that the activation of mGlu7 receptors may be a promising target for neuroprotection against ischemic and excitotoxic insults. Copyright © 2014. Published by Elsevier Ltd.
    Neurochemistry International 01/2015; DOI:10.1016/j.neuint.2014.12.010 · 2.65 Impact Factor