Article

The generation of adipocytes by the neural crest

Institut de Recherche, Signalisation, Biologie du Développement et Cancer, CNRS UMR 6543, Centre de Biochimie, Faculté des Sciences, Université Nice Sophia-Antipolis, Nice, France.
Development (Impact Factor: 6.27). 07/2007; 134(12):2283-92. DOI: 10.1242/dev.002642
Source: PubMed

ABSTRACT Fat cells (adipocytes) develop from adipocyte precursor cells (preadipocytes) that themselves derive from mesenchymal progenitors. Although the events controlling preadipocyte differentiation into mature adipocytes have been largely explored, the mechanisms that direct mesenchymal progenitors down the adipocyte pathway remain unknown. Similarly, although adipocytes are generally thought to derive from mesoderm, key information is lacking regarding the origin and the development of the adipose tissue during embryogenesis. The aim of this study was to gain insight into the ontogeny of fat cells, both in mouse embryonic stem (mES) cell-derived cultures and during normal development. We first used genetically engineered mES cells to produce and select ES cell-derived neuroepithelial progenitors and showed that neuroectoderm, rather than mesoderm, may be a source of adipocytes in mES cell-derived cultures. We then used primary and secondary cultures of developing quail neural crest (NC) cells to demonstrate that NC cells are able, upon stimulation with defined factors, to differentiate into adipocytes, thus providing a powerful system to study the earliest stages of adipocyte differentiation. Finally, we mapped NC derivatives in vivo using Cre-mediated recombination in transgenic mice and demonstrated that a subset of adipocytes originates from the NC during normal development.

2 Followers
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal study findings have revealed that individual fat depots are not functionally equivalent and have different embryonic origins depending on the anatomic location. Mouse bone regeneration studies have also shown that it is essential to match the Hox code of transplanted cells and host tissues to achieve correct repair. However, subcutaneous fat depots from any donor site are often used in autologous fat grafting. Our study was thus carried out to determine the embryonic origins of human facial (chin) and limb (knee) fat depots and whether they had similar features and molecular matching patterns. Paired chin and knee fat depots were harvested from 11 subjects and gene expression profiles were determined by DNA microarray analyses. Adipose-derived stromal cells (ASCs) from both sites were isolated and analyzed for their capacity to proliferate, form clones, and differentiate. Chin and knee fat depots expressed a different HOX code and could have different embryonic origins. ASCs displayed a different phenotype, with chin-ASCs having the potential to differentiate into brown-like adipocytes, whereas knee-ASCs differentiated into white adipocytes. These results highlighted different features for these two fat sites and indicated that donor site selection might be an important factor to be considered when applying adipose tissue in cell-based therapies.
    Stem cell International 02/2015; 2015:1-11. DOI:10.1155/2015/592090 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease, best characterized by the formation of proliferative nodules that express smooth muscle and melanocytic antigens within the lung parenchyma, leading to progressive destruction of lung tissue and function. The pathological basis of LAM is associated with Tuberous Sclerosis Complex (TSC), a multi-system disorder marked by low-grade tumors in the brain, kidneys, heart, eyes, lung and skin, arising from inherited or spontaneous germ-line mutations in either of the TSC1 or TSC2 genes. LAM can develop either in a patient with TSC (TSC-LAM) or spontaneously (S-LAM), and it is clear that the majority of LAM lesions of both forms are characterized by an inactivating mutation in either TSC1 or TSC2, as in TSC. Despite this genetic commonality, there is considerable heterogeneity in the tumor spectrum of TSC and LAM patients, the basis for which is currently unknown. There is extensive clinical evidence to suggest that the cell of origin for LAM, as well as many of the TSC-associated tumors, is a neural crest cell, a highly migratory cell type with extensive multi-lineage potential. Here we explore the hypothesis that the types of tumors that develop and the tissues that are affected in TSC and LAM are dictated by the developmental timing of TSC gene mutations, which determines the identities of the affected cell types and the size of downstream populations that acquire a mutation. We further discuss the evidence to support a neural crest origin for LAM and TSC tumors, and propose approaches for generating humanized models of TSC and LAM that will allow cell of origin theories to be experimentally tested. Identifying the cell of origin and developing appropriate humanized models is necessary to truly understand LAM and TSC pathology and to establish effective and long-lasting therapeutic approaches for these patients.
    Frontiers in Cell and Developmental Biology 11/2014; 2:69. DOI:10.3389/fcell.2014.00069
  • [Show abstract] [Hide abstract]
    ABSTRACT: The distribution of adipose tissue in the body has wide-ranging and reproducible associations with health and disease. Accumulation of adipose tissue in the upper body (abdominal obesity) is associated with the development of cardiovascular disease, insulin resistance, type 2 diabetes mellitus and even all-cause mortality. Conversely, accumulation of fat in the lower body (gluteofemoral obesity) shows opposite associations with cardiovascular disease and type 2 diabetes mellitus when adjusted for overall fat mass. The abdominal depots are characterized by rapid uptake of predominantly diet-derived fat and a high lipid turnover that is easily stimulated by adrenergic receptor activation. The lower-body fat stores have a reduced lipid turnover with a capacity to accommodate fat undergoing redistribution. Lower-body adipose tissue also seems to retain the capacity to recruit additional adipocytes as a result of weight gain and demonstrates fewer signs of inflammatory insult. New data suggest that the profound functional differences between the upper-body and lower-body tissues are controlled by site-specific sets of developmental genes, such as HOXA6, HOXA5, HOXA3, IRX2 and TBX5 in subcutaneous abdominal adipose tissue and HOTAIR, SHOX2 and HOXC11 in gluteofemoral adipose tissue, which are under epigenetic control. This Review discusses the developmental and functional differences between upper-body and lower-body fat depots and provides mechanistic insight into the disease-protective effects of lower-body fat.
    Nature Reviews Endocrinology 11/2014; 11(2). DOI:10.1038/nrendo.2014.185 · 12.96 Impact Factor