The generation of adipocytes by the neural crest

Institut de Recherche, Signalisation, Biologie du Développement et Cancer, CNRS UMR 6543, Centre de Biochimie, Faculté des Sciences, Université Nice Sophia-Antipolis, Nice, France.
Development (Impact Factor: 6.46). 07/2007; 134(12):2283-92. DOI: 10.1242/dev.002642
Source: PubMed


Fat cells (adipocytes) develop from adipocyte precursor cells (preadipocytes) that themselves derive from mesenchymal progenitors. Although the events controlling preadipocyte differentiation into mature adipocytes have been largely explored, the mechanisms that direct mesenchymal progenitors down the adipocyte pathway remain unknown. Similarly, although adipocytes are generally thought to derive from mesoderm, key information is lacking regarding the origin and the development of the adipose tissue during embryogenesis. The aim of this study was to gain insight into the ontogeny of fat cells, both in mouse embryonic stem (mES) cell-derived cultures and during normal development. We first used genetically engineered mES cells to produce and select ES cell-derived neuroepithelial progenitors and showed that neuroectoderm, rather than mesoderm, may be a source of adipocytes in mES cell-derived cultures. We then used primary and secondary cultures of developing quail neural crest (NC) cells to demonstrate that NC cells are able, upon stimulation with defined factors, to differentiate into adipocytes, thus providing a powerful system to study the earliest stages of adipocyte differentiation. Finally, we mapped NC derivatives in vivo using Cre-mediated recombination in transgenic mice and demonstrated that a subset of adipocytes originates from the NC during normal development.

Download full-text


Available from: Nathalie Billon, Oct 08, 2015
26 Reads
  • Source
    • "These results are in accordance with previous reports [42], [43]. In our study, both cNCCs and tNCCs differentiated into adipocytes, as shown in a previous study [44], although trunk EGFP− cells produced the highest number of adipocytes. This result is quite reasonable, because trunk EGFP− cells include a relatively large proportion of mesodermal stem cells that can differentiate into osteocytes, chondrocytes and adipocytes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The outstanding differentiation capacities and easier access from adult tissues, cells derived from neural crest cells (NCCs) have fascinated scientists in developmental biology and regenerative medicine. Differentiation potentials of NCCs are known to depend on their originating regions. Here, we report differential molecular features between craniofacial (cNCCs) and trunk (tNCCs) NCCs by analyzing transcription profiles and sphere forming assays of NCCs from P0-Cre/floxed-EGFP mouse embryos. We identified up-regulation of genes linked to carcinogenesis in cNCCs that were not previously reported to be related to NCCs, which was considered to be, an interesting feature in regard with carcinogenic potentials of NCCs such as melanoma and neuroblastoma. Wnt signal related genes were statistically up-regulated in cNCCs, also suggesting potential involvement of cNCCs in carcinogenesis. We also noticed intense expression of mesenchymal and neuronal markers in cNCCs and tNCCs, respectively. Consistent results were obtained from in vitro sphere-forming and differentiation assays. These results were in accordance with previous notion about differential potentials of cNCCs and tNCCs. We thus propose that sorting NCCs from P0-Cre/floxed-EGFP mice might be useful for the basic and translational research of NCCs. Furthermore, these newly-identified genes up-regulated in cNCC would provide helpful information on NC-originating tumors, developmental disorders in NCC derivatives, and potential applications of NCCs in regenerative medicine.
    PLoS ONE 01/2014; 9(1):e84072. DOI:10.1371/journal.pone.0084072 · 3.23 Impact Factor
  • Source
    • "We identified only a few NC-derived GFP+ adipocytes in the head and almost none in the trunk despite their efficient adipogenic potential in vitro. This is consistent with in vivo fate mapping of either Sox10-Cre or Wnt1-Cre lineage analysis [13], [41]. One possible explanation is that NCDASCs colonize earlier but are largely replaced by non-NC derivatives before in vivo adipogenesis occurs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that adipose-derived stromal/stem cells (ASCs) contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs). This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2) and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta). NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.
    PLoS ONE 12/2013; 8(12):e84206. DOI:10.1371/journal.pone.0084206 · 3.23 Impact Factor
  • Source
    • "With the upsurge in interest in adipose tissue, in relation to disease and as a source of stem cells, attention is beginning to focus on differences between adipose depots and their developmental origins. Much remains to be clarified about the precise origin and developmental progression of adipocytes [1],[2],[3],[4],[5]. Conventionally, it was thought that many adipocytes develop from a mesodermal lineage, and derive from so-called adipoblasts, early precursors, which differentiate from mesenchymal stem cells [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16) the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis), under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.
    PLoS ONE 10/2013; 8(3):e59811. DOI:10.1371/journal.pone.0059811 · 3.23 Impact Factor
Show more