Activation of human platelets by misfolded proteins.

Laboratory of Thrombosis and Haemostasis, Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 5.53). 08/2007; 27(7):1657-65. DOI: 10.1161/ATVBAHA.107.143479
Source: PubMed

ABSTRACT Protein misfolding diseases result from the deposition of insoluble protein aggregates that often contain fibrils called amyloid. Amyloids are found in Alzheimer disease, atherosclerosis, diabetes mellitus, and systemic amyloidosis, which are diseases where platelet activation might be implicated.
We induced amyloid properties in 6 unrelated proteins and found that all induced platelet aggregation in contrast to fresh controls. Amyloid-induced platelet aggregation was independent of thromboxane A2 formation and ADP secretion but enhanced by feedback stimulation through these pathways. Treatments that raised cAMP (iloprost), sequestered Ca2+ (BAPTA-AM) or prevented amyloid-platelet interaction (sRAGE, tissue-type plasminogen activator [tPA]) induced almost complete inhibition. Modulation of the function of CD36 (CD36-/- mice), p38(MAPK) (SB203580), COX-1 (indomethacin), and glycoprotein Ib alpha (Nk-protease, 6D1 antibody) induced approximately 50% inhibition. Interference with fibrinogen binding (RGDS) revealed a major contribution of alphaIIb beta3-independent aggregation (agglutination).
Protein misfolding resulting in the appearance of amyloid induces platelet aggregation. Amyloid activates platelets through 2 pathways: one is through CD36, p38(MAPK), thromboxane A2-mediated induction of aggregation; the other is through glycoprotein Ib alpha-mediated aggregation and agglutination. The platelet stimulating properties of amyloid might explain the enhanced platelet activation observed in many diseases accompanied by the appearance of misfolded proteins with amyloid.

Download full-text


Available from: Eszter Herczenik, Jun 19, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of amyloidogenic Aβ peptides in the brain contributes to the onset of Alzheimer disease. Aβ peptide deposits are also present in blood vessel walls, mainly deriving from circulating platelets. However, their effect on platelet function is unclear. We demonstrate that immobilized Aβ peptides induce platelet adhesion and spreading through metalloproteinase-sensitive surface receptors. Aβ peptides also fasten platelet spreading on collagen, and support the time- and ADP-dependent activation of adherent platelets, leading to stimulation of several signalling proteins. Our results indicate a potential role for peripheral Aβ peptides in promoting platelet adhesion and activation in the initiation of thrombus formation.
    FEBS letters 07/2013; 587(16). DOI:10.1016/j.febslet.2013.06.041 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the context of plaque progression, platelet hyperactivity associated with hyperlipidemia contributes to the development of a pro-thrombotic state. In this context, it has been demonstrated that advanced glycation end products (AGEs) significantly increases platelet activation and receptor for AGEs (RAGE) expression at the platelet surface membrane. In addition to AGEs, other ligands (S100, HMGB1 and amyloid β, among others) of RAGE have raised particular attention in platelet activation. Therefore, in this article we describe platelet hyperactivity by AGEs via RAGE-independent and RAGE-dependent pathways.
    Thrombosis Research 01/2013; · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid beta peptide (amyloid-beta), which accumulates in the cerebral microvessels in an age-dependent manner, plays a key role in the pathogenesis of cerebral amyloid angiopathy. Platelets are an important cellular element in vasculopathy of various causes. Amyloid-beta may activate or potentiate platelet aggregation. The present study explored the signaling events that underlie amyloid-beta activation of platelet aggregation. Platelet aggregometry, immunoblotting and assays to detect activated cellular events were applied to examine the signaling processes of amyloid-beta activation of platelets. Exogenous amyloid-beta (1-2 microM) potentiated platelet aggregation caused by collagen and other agonists. At higher concentrations (5-10 microM), amyloid-beta induced platelet aggregation which was accompanied by an increase in thromboxane A2 (TxA2) formation. These amyloid-beta actions on platelets were causally related to amyloid-beta activation of p38 mitogen-activated protein kinase (MAPK). Inhibitors of p38 MAPK and its upstream signaling pathways including proteinase-activated receptor 1 (PAR1), Ras, phosphoinositide 3-kinase (PI3-kinase), or Akt, but not extracellular signal-regulated kinase 2 (ERK2)/c-Jun N-terminal kinase 1 (JNK1), blocked amyloid-beta-induced platelet activation. These findings suggest that the p38 MAPK, but not ERK2 or JNK1 pathway, is specifically activated in amyloid-beta-induced platelet aggregation with the following signaling pathway: PAR1 --> Ras/Raf --> PI3-kinase --> Akt --> p38 MAPK --> cytosolic phospholipase A2 (cPLA2)--> TxA2. In conclusion, this study demonstrates amyloid-beta activation of a p38 MAPK signaling pathway in platelets leading to aggregation. Further studies are needed to define the specific role of amyloid-beta activation of platelets in the pathogenesis of vasculopathy including cerebral amyloid angiopathy.
    European Journal of Pharmacology 08/2008; 588(2-3):259-66. DOI:10.1016/j.ejphar.2008.04.040 · 2.68 Impact Factor