Article

Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2.

Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, Research Triangle Park, NC 27709, USA.
Free Radical Biology and Medicine (Impact Factor: 5.27). 07/2007; 42(12):1797-806. DOI: 10.1016/j.freeradbiomed.2007.03.001
Source: PubMed

ABSTRACT Nrf2 is a key transcription factor in the cellular response to oxidative stress. In this study we identify two phosphorylated forms of endogenous human Nrf2 after chemically induced oxidative stress and provide evidence that protein kinase CK2-mediated sequential phosphorylation plays potential roles in Nrf2 activation and degradation. Human Nrf2 has a predicted molecular mass of 66 kDa. However, immunoblots showed that two bands at 98 and 118 kDa, which are identified as phosphorylated forms, are increased in response to Nrf2 inducers. In addition, human Nrf2 was found to be a substrate for CK2 which mediated two steps of phosphorylation, resulting in two forms of Nrf2 migrating with differing M(r) at 98 kDa (Nrf2-98) and 118 kDa (Nrf2-118). Our results support a role in which calmodulin binding regulates CK2 activity, in that cold (25 degrees C) Ca(2+)-free media (cold/Ca(2+)-free) decreased both cellular calcium levels and CK2-calmodulin binding and induced Nrf2-118 formation, the latter of which was prevented by CK2-specific inhibitors. Gel shift assays showed that the Nrf2-118 generated under cold/Ca(2+)-free conditions does not bind to the antioxidant response element, indicating that Nrf2-98 has transcriptional activity. In contrast, Nrf2-118 is more susceptible to degradation. These results provide evidence for phosphorylation by CK2 as a critical controlling factor in Nrf2-mediated cellular antioxidant response.

0 Bookmarks
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although previous studies have shown that mollugin, a bioactive phytochemical isolated from Rubia cordifolia L. (Rubiaceae), exhibits antitumor effects, its biological activity in oral cancer has not been reported. We thus investigated the effects and putative mechanism of apoptosis induced by mollugin in human oral squamous cell carcinoma cells (OSCCs). Results show that mollugin induces cell death in a dose-dependent manner in primary and metastatic OSCCs. Mollugin-induced cell death involved apoptosis, characterized by the appearance of nuclear shrinkage, flow cytometric analysis of sub-G1 phase arrest, and annexin V-FITC and propidium iodide staining. Western blot analysis and RT-PCR revealed that mollugin suppressed activation of NF- κ B and NF- κ B-dependent gene products involved in antiapoptosis (Bcl-2 and Bcl-xl), invasion (MMP-9 and ICAM-1), and angiogenesis (FGF-2 and VEGF). Furthermore, mollugin induced the activation of p38, ERK, and JNK and the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2). Mollugin-induced growth inhibition and apoptosis of HO-1 were reversed by an HO-1 inhibitor and Nrf2 siRNA. Collectively, this is the first report to demonstrate the effectiveness of mollugin as a candidate for a chemotherapeutic agent in OSCCs via the upregulation of the HO-1 and Nrf2 pathways and the downregulation of NF- κ B.
    BioMed research international. 01/2013; 2013:210604.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemoprevention represents a strategy designed to protect cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. Recent studies indicate that plant-derived triterpenoids, like oleanolic acid, may exert cytoprotective functions via regulation of the activity of different transcription factors. The chemopreventive effects may be mediated through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Activation of Nrf2 by triterpenoids induces the expression of phase 2 detoxifying and antioxidant enzymes such as NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) - proteins which can protect cells or tissues against various toxic metabolites. On the other hand, inhibition of other transcription factors, like NF-κB leads to the decrease in the pro-inflammatory gene expression. Moreover, the modulation of microRNAs activity may constitute a new mechanism responsible for valuable effects of triterpenoids. Recently, based on the structure of naturally occurring triterpenoids and with involvement of bioinformatics and computational chemistry, many synthetic analogs with improved biological properties have been obtained. Data from in vitro and in vivo experiments strongly suggest synthetic derivatives as promising candidates in the chemopreventive and chemotherapeutic strategies.
    Biomolecules and Therapeutics 11/2012; 20(6):499-505. · 0.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Baicalein, a major component of Scutellaria Baicalensis Georgi (Huang Qin), is widely used in the traditional Chinese medicine. However, the mechanisms underlying cancer chemoprevention are still not clear. The present study aimed to clarify how baicalein modulate Nrf2/Keap1 system to exert its cytoprotection and cancer chemoprevention. In the upstream cellular signaling, baicalein stimulated the phosphorylation of MEK1/2, AKT and JNK1/2, which were demonstrated to be essential for baicalein-induced Nrf2 expression by their inhibitors. Immunoprecipitation with Nrf2 found that baicalein increased the amount of phosphorylated MEK1/2, AKT and JNK1/2 bound to Nrf2, and also stabilized Nrf2 protein by inhibiting the ubiquitination and proteasomal turnover of Nrf2. Simultaneously, baicalein down-regulated Keap1 by stimulating modification and degradation of Keap1 without affecting the dissociation of Keap1-Nrf2. Silencing Nrf2 using Nrf2 siRNA markedly reduced the ARE activity under both baseline and baicalein-induced conditions. Thus, baicalein positively modulate Nrf2/Keap1 system through both Keap1-independent and -dependent pathways. These finding provide an insight to understand the mechanisms of baicalein in cytoprotection and cancer chemoprevention.
    Archives of Biochemistry and Biophysics 04/2014; · 3.37 Impact Factor

Full-text (2 Sources)

View
28 Downloads
Available from
May 28, 2014