Inhibition of influenza viral neuraminidase activity by collectins.

Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
Archives of Virology (Impact Factor: 2.28). 02/2007; 152(9):1731-42. DOI: 10.1007/s00705-007-0983-4
Source: PubMed

ABSTRACT The collectins, lung surfactant proteins A and D (SP-A and SP-D), contribute to innate host defense against influenza A virus (IAV) in vivo. Although collectins bind to the viral hemagglutinin (HA) and inhibit early stages of viral infection in vitro, they also bind to the neuraminidase (NA) and inhibit NA activity. We used a variety of NA functional assays, viral strains and recombinant (mutant or wild type) collectins to characterize the mechanism of NA inhibition. NA inhibition by SP-D correlates with binding of its carbohydrate recognition domain (CRD) to oligomannose oligosaccharides on the viral hemagglutinin (HA). The effects of SP-D are additive with oseltamivir, consistent with differences in mechanism of action. NA inhibition was observed using fetuin or MDCK cells as a substrate, but not in assays using a soluble sialic acid analogue. Collectin multimerization and CRD binding properties are key determinants for NA inhibition. SP-D had greater NA inhibitory activity than mannose-binding lectin, which in turn had greater activity than SP-A. The markedly greater NA inhibitory activity of SP-D compared to SP-A may partly account for the finding that deletion of the SP-D gene in mice has a greater effect on viral replication in vivo.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The apparent family clustering of avian influenza A/H5N1 has led several groups to postulate the existence of a host genetic influence on susceptibility to A/H5N1, yet the role of host factors on the risk of A/H5N1 disease has received remarkably little attention compared to the efforts focused on viral factors. We examined the epidemiological patterns of human A/H5N1 cases, their possible explanations, and the plausibility of a host genetic effect on susceptibility to A/H5N1 infection. The preponderance of familial clustering of cases and the relative lack of non-familial clusters, the occurrence of related cases separated by time and place, and the paucity of cases in some highly exposed groups such as poultry cullers, are consistent with a host genetic effect. Animal models support the biological plausibility of genetic susceptibility to A/H5N1. Although the evidence is circumstantial, host genetic factors are a parsimonious explanation for the unusual epidemiology of human A/H5N1 cases and warrant further investigation.
    Epidemiology and Infection 03/2010; 138(11):1550-8. · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Host-mediated recognition of mannose-rich glycans on the surface of pathogens represents an ancient mechanism of innate immune defence. In this study, we demonstrate that the virus strains that differ in the degree of N-linked glycosylation on the globular head of their hemagglutinin glycoprotein also differed in their (i) sensitivity to neutralization by a mannose-specific lectin in mouse lung fluids and (ii) ability to infect (and, therefore, to be destroyed) by airway macrophages. Virus strain BJx109 (H3N2), but not PR8 (H1N1), was sensitive to neutralization by mouse lung fluids and infected airway macrophages efficiently in vitro and these antiviral activities were blocked by mannan, a complex polymer of mannose residues. Although intranasal (i.n.) infection of mice with PR8 led to severe disease and mortality, mice infected with an equivalent dose of BJx109 displayed no signs of disease. However, i.n. treatment of BJx109-infected mice with mannan led to viral pneumonia, severe disease and death characterized by excessive virus replication, pulmonary inflammation, vascular leak and lung edema. Thus, when mannose-specific innate defences were inhibited in vivo, virus strain BJx109 induced severe viral pneumonia similar to that of PR8. Together, these findings highlight the importance of N-linked glycans as a target for recognition and destruction of influenza viruses by the innate immune system. Moreover, soluble and cell-associated lectins coordinate to modulate disease severity following influenza virus infection of mice.
    Immunology and Cell Biology 10/2010; 89(3):482-91. · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Influenza is responsible for the infection of approximately 20% of the population every season and for an annual death toll of approximately half a million people. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination by injection with an inactivated vaccine, or by intranasal administration of a live-attenuated vaccine. Protection is not always optimal and there is a need for the development of new vaccines with improved efficacy and for the expansion of enrollment into vaccination programs. An overview of old and new vaccines is presented. Methods of monitoring immune responses such as hemagglutination-inhibition, ELISA and neutralization tests are evaluated for their accuracy in the assessment of current and new-generation vaccines.
    Expert Review of Vaccines 12/2010; 9(12):1423-39. · 4.22 Impact Factor


Available from
May 26, 2014