Three-dimensional time-resolved optical mammography of the uncompressed breast

Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK.
Applied Optics (Impact Factor: 1.69). 07/2007; 46(17):3628-38. DOI: 10.1364/AO.46.003628
Source: PubMed

ABSTRACT Optical tomography is being developed as a means of detecting and specifying disease in the adult female breast. We present a series of clinical three-dimensional optical images obtained with a 32-channel time-resolved system and a liquid-coupled interface. Patients place their breasts in a hemispherical cup to which sources and detectors are coupled, and the remaining space is filled with a highly scattering fluid. A cohort of 38 patients has been scanned, with a variety of benign and malignant lesions. Images show that hypervascularization associated with tumors provides very high contrast due to increased absorption by hemoglobin. Only half of the fibroadenomas scanned could be observed, but of those that could be detected, all but one revealed an apparent increase in blood volume and a decrease in scatter and oxygen saturation.

Download full-text


Available from: Michael Douek, Jun 21, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accuracy of the commonly used diffusion approximation as used in diffuse optical tomography is known to be limited in cases involving strong absorption and in these situations a higher ordered approximation is necessary. In this study, a light transport model has been developed based upon the three-dimensional frequency-domain simplified spherical harmonics (SP(N)) approximation for orders up to N = 7. The SP(N) data are tested against a semi-infinite multi-layered Monte Carlo model. It has been shown that the SP(N) approximation for higher orders (N >1) provides an increase in accuracy over the diffusion equation specifically near sources and at boundaries of regions with increased optical absorption. It is demonstrated that the error of fluence calculated near the sources between the diffusion approximation and the SP(N) model (N = 7) can be as large as 60%, therefore limiting the use of the diffusion approximation for small animal imaging and in situations where optical changes near sources are critical for tomographic reconstructions.
    Physics in Medicine and Biology 04/2009; 54(8):2493-509. DOI:10.1088/0031-9155/54/8/016 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer characteristics such as angiogenesis and hypoxia can be quantified by using optical tomography imaging to observe the hemodynamic response to an external stimulus. A digital near-infrared tomography system has been developed specifically for the purpose of dynamic breast imaging. It simultaneously acquires four frequency encoded wavelengths of light at 765, 808, 827, and 905nm in order to facilitate the functional imaging of oxy- and deoxy-hemoglobin, lipid concentration and water content. The system uses 32 source fibers to simultaneously illuminate both breasts. There are 128 detector fibers, 64 fibers for each breast, which deliver the detected light to silicon photo-detectors. The signal is conditioned by variable gain amplifiers and filters and is quantized by an analog to digital converter (ADC). The sampled signal is then passed on for processing using a Digital Signal Processor (DSP) prior to display on a host computer. The system can acquire 2.23 frames per second with a dynamic range of 236 dB.
    Proceedings of SPIE - The International Society for Optical Engineering 01/2009; DOI:10.1117/12.809153 · 0.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical imaging has the potential to play a major role in breast cancer screening and diagnosis due to its ability to image cancer characteristics such as angiogenesis and hypoxia. A promising approach to evaluate and quantify these characteristics is to perform dynamic imaging studies in which one monitors the hemodynamic response to an external stimulus, such as a valsalva maneuver. It has been shown that the response to such stimuli shows MARKED differences between cancerous and healthy tissues. The fast imaging rates and large dynamic range of digital devices makes them ideal for this type of imaging studies. Here we present a digital optical tomography system designed specifically for dynamic breast imaging. The instrument uses laser diodes at 4 different near-infrared wavelengths with 32 sources and 128 silicon photodiode detectors.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 02/2008; 2008:3735-8.