Article

Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation.

Department of Pathology and Immunology, Central and Eastern Clinical School, Monash University, Melbourne, Australia.
The Journal of Immunology (Impact Factor: 5.36). 07/2007; 178(11):7473-84. DOI: 10.4049/jimmunol.178.11.7473
Source: PubMed

ABSTRACT Delayed immune reconstitution in adult recipients of allogeneic hemopoietic stem cell transplantations (HSCT) is related to age-induced thymic atrophy. Overcoming this paucity of T cell function is a major goal of clinical research but in the context of allogeneic transplants, any strategy must not exacerbate graft-vs-host disease (GVHD) yet ideally retain graft-vs-tumor (GVT) effects. We have shown sex steroid ablation reverses thymic atrophy and enhances T cell recovery in aged animals and in congenic bone marrow (BM) transplant but the latter does not have the complications of allogeneic T cell reactivity. We have examined whether sex steroid ablation promoted hemopoietic and T cell recovery following allogeneic HSCT and whether this benefit was negated by enhanced GVHD. BM and thymic cell numbers were significantly increased at 14 and 28 days after HSCT in castrated mice compared with sham-castrated controls. In the thymus, the numbers of donor-derived thymocytes and dendritic cells were significantly increased after HSCT and castration; donor-derived BM precursors and developing B cells were also significantly increased. Importantly, despite restoring T cell function, sex steroid inhibition did not exacerbate the development of GVHD or ameliorate GVT activity. Finally, IL-7 treatment in combination with castration had an additive effect on thymic cellularity following HSCT. These results indicate that sex steroid ablation can profoundly enhance thymic and hemopoietic recovery following allogeneic HSCT without increasing GVHD and maintaining GVT.

0 Bookmarks
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms underlying age-related defects within lymphoid-lineages remain poorly understood. We previously reported that sex steroid ablation (SSA) induced lymphoid rejuvenation and enhanced recovery from hematopoietic stem cell (HSC) transplantation (HSCT). We herein show that, mechanistically, SSA induces hematopoietic and lymphoid recovery by functionally enhancing both HSC self-renewal and propensity for lymphoid differentiation through intrinsic molecular changes. Our transcriptome analysis revealed further hematopoietic support through rejuvenation of the bone marrow (BM) microenvironment, with upregulation of key hematopoietic factors and master regulatory factors associated with aging such as Foxo1. These studies provide important cellular and molecular insights into understanding how SSA-induced regeneration of the hematopoietic compartment can underpin recovery of the immune system following damaging cytoablative treatments. These findings support a short-term strategy for clinical use of SSA to enhance the production of lymphoid cells and HSC engraftment, leading to improved outcomes in adult patients undergoing HSCT and immune depletion in general. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this article was to review the factors that influence the aging, relationship of aging with the biological rhythms and new technologies as well as the main theories to explain the aging, and to analysis the causes of aging. The theories to explain the aging could be put into two groups: those based on a program that controlled the regression of the organism and those that postulated that the deterioration was due to mutations. It was concluded that aging was a multifactorial process. Genetic factors indicated the maximum longevity of the individual and environmental factors responsible for the real longevity of the individual. It would be necessary to guarantee from early age the conservation of a natural life rhythm.
    Brazilian Archives of Biology and Technology 11/2010; 53(6):1319-1332. DOI:10.1590/S1516-89132010000600008 · 0.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paradoxical to its importance for generating a diverse T cell repertoire, thymic function progressively declines throughout life. This process has been at least partially attributed to the effects of sex steroids, and their removal promotes enhanced thymopoiesis and recovery from immune injury. We show that one mechanism by which sex steroids influence thymopoiesis is through direct inhibition in cortical thymic epithelial cells (cTECs) of Delta-like 4 (Dll4), a Notch ligand crucial for the commitment and differentiation of T cell progenitors in a dose-dependent manner. Consistent with this, sex steroid ablation (SSA) led to increased expression of Dll4 and its downstream targets. Importantly, SSA induced by luteinizing hormone-releasing hormone (LHRH) receptor antagonism bypassed the surge in sex steroids caused by LHRH agonists, the gold standard for clinical ablation of sex steroids, thereby facilitating increased Dll4 expression and more rapid promotion of thymopoiesis. Collectively, these findings not only reveal a novel mechanism underlying improved thymic regeneration upon SSA but also offer an improved clinical strategy for successfully boosting immune function.

Full-text (2 Sources)

Download
20 Downloads
Available from
Jul 10, 2014