A universal RNAi-based logic evaluator that operates in mammalian cells.

FAS Center for Systems Biology, Harvard University, 7 Divinity Ave., Cambridge, Massachusetts 02138 USA.
Nature Biotechnology (Impact Factor: 39.08). 08/2007; 25(7):795-801. DOI: 10.1038/nbt1307
Source: PubMed

ABSTRACT Molecular automata that combine sensing, computation and actuation enable programmable manipulation of biological systems. We use RNA interference (RNAi) in human kidney cells to construct a molecular computing core that implements general Boolean logic to make decisions based on endogenous molecular inputs. The state of an endogenous input is encoded by the presence or absence of 'mediator' small interfering RNAs (siRNAs). The encoding rules, combined with a specific arrangement of the siRNA targets in a synthetic gene network, allow direct evaluation of any Boolean expression in standard forms using siRNAs and indirect evaluation using endogenous inputs. We demonstrate direct evaluation of expressions with up to five logic variables. Implementation of the encoding rules through sensory up- and down-regulatory links between the inputs and siRNA mediators will allow arbitrary Boolean decision-making using these inputs.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biosensors offer a built-in energy supply and inherent sensing machinery that when exploited correctly may surpass traditional sensors. However, biosensor systems have been hindered by a narrow range of ligand detection capabilities, a relatively low signal output, and their inability to integrate multiple signals. Integration of signals could increase the specificity of the sensor and enable detection of a combination of ligands that may indicate environmental or developmental processes when detected together. Amplifying biosensor signal output will increase detector sensitivity and detection range. Riboswitches offer the potential to widen the diversity of ligands that may be detected, and advances in synthetic biology are illuminating myriad possibilities in signal processing using an orthogonal parts-based engineering approach. In this chapter, we describe the design, building, and testing of a riboswitch-based Boolean logic AND gate in bacteria, where an output requires the activation of two riboswitches, and the biological circuitry required to amplify the output of the AND gate using natural extracellular bacterial communication signals to "wire" cells together. © 2015 Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The major challenge for the application of autonomous medical sensing systems is the noise produced by non-zero physiological concentrations of the sensed target. If the level of noise is high, then a real signal indicating abnormal changes in the physiological levels of the analytes might be hindered. Inevitably, this could lead to wrong diagnostics and treatment, and would have a negative impact on human health. Here, we report the realization of a filter system implemented to improve both the fidelity of sensing and the accuracy of consequent drug release. A new filtering method was tested in the sensing system for the diagnosis of liver injury. This sensing system used the enzymes alanine transaminase (ALT) and aspartate transaminase (AST) as the inputs. Furthermore, the output of the sensing system was designed to trigger drug release, and therefore, the role of the filter in drug release was also investigated. The drug release system consists of beads with an iron-cross-linked alginate core coated with different numbers of layers of poly-L-lysine. Dissolution of the beads by the output signals of the sensing system in the presence and absence of the filter was monitored by the release of rhodamine-6G dye encapsulated in the beads, mimicking the release of a real drug. The obtained results offer a new view of the problem of noise reduction for systems intended to be part of sense and treat medical devices.
    01/2014; 2(2):184. DOI:10.1039/c3bm60197h
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthetic biology employs traditional engineering concepts in the construction of cells and organisms. One of the most fundamental concepts is feedback, where the activity of a system is influenced by its output. Feedback can imbue the system with a range of desirable properties such as reducing the rise time or exhibiting an ultrasensitive response. Feedback is also commonly found in nature, further supporting the incorporation of feedback into synthetic biological systems. In this review, we discuss the common attributes of negative and positive feedback loops in gene regulatory networks, whether alone or in combination, and describe recent applications of feedback in metabolic engineering, population control, and the development of advanced biosensors. The examples principally come from synthetic systems in the bacterium Escherichia coli and in the budding yeast Saccharomyces cerevisiae, the two major workhorses of synthetic biology. Through this review, we argue that biological feedback represents a powerful yet underutilized tool that can advance the construction of biological systems.
    Chemical Engineering Science 11/2013; 103:79-90. DOI:10.1016/j.ces.2013.02.017 · 2.61 Impact Factor



Leonidas Bleris