Article

Zyflamend, a polyherbal preparation, inhibits invasion, suppresses osteoclastogenesis, and potentiates apoptosis through down-regulation of NF-kappa B activation and NF-kappa B-regulated gene products.

Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
Nutrition and Cancer (Impact Factor: 2.47). 02/2007; 57(1):78-87. DOI: 10.1080/01635580701268295
Source: PubMed

ABSTRACT Zyflamend, a polyherbal preparation, was designed based on constituents that exhibit antiproliferative, antiinflammatory, antioxidant, antiangiogenic, and apoptotic activities through a mechanism that is not well defined. Because the nuclear factor (NF)-kappaB has been shown to regulate proliferation, invasion, and metastasis of tumor cells, we postulated that Zyflamend modulates the activity of NF-kappa B. To test this hypothesis, we examined the effect of this preparation on NF-kappaB and NF-kappaB-regulated gene products. We found that Zyflamend inhibited receptor activator of NF-kappa B ligand-induced osteoclastogenesis, suppressed tumor necrosis factor (TNF)-induced invasion, and potentiated the cytotoxicity induced by TNF and chemotherapeutic agents, all of which are known to require NF-kappa B activation. Zyflamend suppressed NF-kappa B activation induced by both TNF and cigarette smoke condensate. The expression of NF-kappa B-regulated gene products involved in antiapoptosis (inhibitor-of-apoptosis protein 1/2, Bcl-2, Bcl-xL, FADD-like interleukin-1betaconverting enzyme/caspase-8 inhibitory protein, TNF receptor-associated factor-1, and survivin) and angiogenesis (vascular endothelial growth factor, cyclooxygenase-2, intercellular adhesion molecule, and matrix metalloproteinase-9) was also down-regulated by Zyflamend. This correlated with potentiation of cell death induced by TNF and chemotherapeutic agents. Overall, our results indicate that Zyflamend suppresses osteoclastogenesis, inhibits invasion, and potentiates cytotoxicity through down-regulation of NF-kappa B activation and NF-kappa B-regulated gene products.

1 Follower
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In postmenopausal women, obesity is a risk factor for the development of hormone receptor-positive breast cancer driven by estrogen. After menopause, aromatization of androgen precursors in adipose tissue is a major synthetic source of estrogen. Recently, in mouse models and women, we identified an obesity-inflammation-aromatase axis. This obesity induced inflammation is characterized by crown-like structures (CLS) consisting of dead adipocytes encircled by macrophages in breast white adipose tissue. CLS occur in association with NF-κB activation, elevated levels of proinflammatory mediators and increased aromatase expression. Saturated fatty acids released from adipocytes have been linked to obesity-related white adipose tissue inflammation. Here we found that stearic acid, a prototypic saturated fatty acid, stimulated Akt-dependent activation of NF-κB resulting in increased levels of proinflammatory mediators (TNF-α, IL-1β, COX-2) in macrophages leading, in turn, to the induction of aromatase. Several polyphenols (resveratrol, curcumin, EGCG) blocked these inductive effects of stearic acid. Zyflamend®, a widely used polyherbal preparation that contains numerous polyphenols, possessed similar suppressive effects. In a mouse model of obesity, treatment with Zyflamend® suppressed levels of phospho-Akt, NF-κB binding activity, proinflammatory mediators and aromatase in the mammary gland. Collectively, these results suggest that targeting the activation of NF-κB is a promising approach for reducing levels of proinflammatory mediators and aromatase in inflamed mouse mammary tissue. Further investigation in obese women is warranted.
    Cancer Prevention Research 07/2013; 6(9). DOI:10.1158/1940-6207.CAPR-13-0140 · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zyflamend, a mixture containing extracts of ten herbs, has shown promise in a variety of preclinical cancer models, including prostate cancer. The current experiments were designed to investigate the effects of Zyflamend on the expression of class I and II histone deacetylases, a family of enzymes known to be over expressed in a variety of cancers. CWR22Rv1 cells, a castrate-resistant prostate cancer cell line, were treated with Zyflamend and the expression of class I and II histone deacetylases, along with their downstream target the tumor suppressor gene p21, was investigated. Involvement of p21 was confirmed with siRNA knockdown and over expression experiments. Zyflamend down-regulated the expression of all class I and II histone deacetylases where Chinese goldthread and baikal skullcap (two of its components) appear to be primarily responsible for these results. In addition, Zyflamend up regulated the histone acetyl transferase complex CBP/p300, potentially contributing to the increase in histone 3 acetylation. Expression of the tumor suppressor gene p21, a known downstream target of histone deacetylases and CBP/p300, was increased by Zyflamend treatment and the effect on p21 was, in part, mediated through Erk1/2. Knockdown of p21 with siRNA technology attenuated Zyflamend-induced growth inhibition. Over expression of p21 inhibited cell growth and concomitant treatment with Zyflamend enhanced this effect. Our results suggest that the extracts of this polyherbal combination increase histone 3 acetylation, inhibit the expression of class I and class II histone deacetylases, increase the activation of CBP/p300 and inhibit cell proliferation, in part, by up regulating p21 expression.
    BMC Complementary and Alternative Medicine 02/2014; 14(1):68. DOI:10.1186/1472-6882-14-68 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NF-kappaB pathway has been proven to be critical to survival of lung cancer cells, and many natural products from plants were shown to inhibit the activation of this pathway. In this study, we investigated the effects of two cardamonin analogs, 4,4'-dihydroxylchalcone (DHC) and 4,4'-dihydroxy-2'-methoxychalcone (DHMC), on survival of lung cancer cells and the involved mechanisms. MTT assay revealed that the two compounds potently decreased the survival of immortalized and primary lung cancer cells. DHC and DHMC were able to induce apoptosis in A549 and NCI-H460 cells. Immunoblotting, immunofluorescent staining, and luciferase reporter further demonstrated that the two compounds suppressed the activation of NF-kappaB pathway in lung cancer cells. PMA-mediated NF-kappaB reactivation abrogated the effect of DHC and DHMC on lung cancer cells. DHC and DHMC were also shown to suppress the growth of A549 xenograft in mice. Collectively, we verified two cardamonin analogs as novel compounds suppressing NF-kappaB signaling for lung cancer therapy.
    Molecular and Cellular Biochemistry 01/2014; DOI:10.1007/s11010-013-1923-0 · 2.39 Impact Factor

Full-text

Download
43 Downloads
Available from
Jun 3, 2014