Article

Effects of personal particulate matter on peak expiratory flow rate of asthmatic children

Feng Chia University, 臺中市, Taiwan, Taiwan
Science of The Total Environment (Impact Factor: 3.16). 09/2007; 382(1):43-51. DOI: 10.1016/j.scitotenv.2007.04.016
Source: PubMed

ABSTRACT Many researches have shown that the particulate matter (PM) of air pollution could affect the pulmonary functions, especially for susceptible groups such as asthmatic children, where PM might decrease the lung function to different extents. To assess the effects of PM on health, most studies use data from ambient air monitoring sites to represent personal exposure levels. However, the data gathered from these fixed sites might introduce certain statistical uncertainties. The objectives of this study are to evaluate the effects of various size ranges of PM on peak expiratory flow rate (PEFR) of asthmatic children, and to compare the model performance of using different PM measurements (personal exposures versus fixed-site monitoring) in evaluation. Thirty asthmatic children, aged 6 to 12 years, who live near the fixed monitoring site in Sin-Chung City, Taipei County, Taiwan, were recruited for the study. Personal exposures to PM(1), PM(2.5), and PM(10) were measured continuously using a portable particle monitor (GRIMM Mode 1.108, Germany). In addition, an activity diary and questionnaires were used to investigate possible confounding factors in their home environments. The peak expiratory flow rate of each participant was monitored daily in the morning and in the evening for two weeks. Results showed several trends, although not necessarily statistically significant, between personal PM exposures and PEFR measurements in asthmatic children. In general, notable findings tend to implicate that not only fine particles (PM(2.5)) but also coarse particles (PM(2.5-10)) are likely to contribute to the exacerbation of asthmatic conditions. Stronger lagged effect and cumulative effect of PM on the decrements in morning PEFR were also found in the study. Finally, results of linear mixed-effect model analysis suggested that personal PM data was more suitable for the assessment of change in children's PEFR than ambient monitoring data.

0 Followers
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary schools mostly rely on natural ventilation but also have an interest in affordable technology to improve indoor air quality (IAQ). Laboratory tests show promising results for dust reducing carpets and compact air filtration systems but there is no information available on the performance of these interventions in actual operating classrooms. An exploratory study was performed to evaluate a combination of the two systems in a primary school. Measurements of PM-10 and PM-2.5 were performed by filter sampling and aerosol spectrometry. Other IAQ parameters included black smoke (BS), volatile organic compounds (VOC), nitrogen dioxide (NO2) and formaldehyde. Both interventions were introduced in one classroom during one week, using another classroom as a reference. In a second week the interventions were moved to the other classroom, using the first as a reference (cross-over design). In three remaining weeks the classrooms were compared without interventions. Indoor IAQ parameters were compared to the corresponding outdoor parameters using the indoor/outdoor (I/O) ratio. When the classrooms were occupied (teaching hours) interventions resulted in 27-43% reductions of PM-10, PM-2.5 and BS values. During the weekends the systems reduced these levels by 51-87 %. Evaluations using the change in I/O ratios gave comparable results. Levels of VOC, NO2 and formaldehyde were rather low and a contribution of the interventions to the improvement of these gas phase IAQ parameters was inconclusive.
    10/2014; 17(2). DOI:10.1039/C4EM00506F
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Geospatial Determinants of Health Outcomes Consortium (GeoDHOC) study investigated ambient air quality across the international border between Detroit, Michigan, USA and Windsor, Ontario, Canada and its association with acute asthma events in 5- to 89-year-old residents of these cities. NO2, SO2, and volatile organic compounds (VOCs) were measured at 100 sites, and particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at 50 sites during two 2-week sampling periods in 2008 and 2009. Acute asthma event rates across neighborhoods in each city were calculated using emergency room visits and hospitalizations and standardized to the overall age and gender distribution of the population in the two cities combined. Results demonstrate that intra-urban air quality variations are related to adverse respiratory events in both cities. Annual 2008 asthma rates exhibited statistically significant positive correlations with total VOCs and total benzene, toluene, ethylbenzene and xylene (BTEX) at 5-digit zip code scale spatial resolution in Detroit. In Windsor, NO2, VOCs, and PM10 concentrations correlated positively with 2008 asthma rates at a similar 3-digit postal forward sortation area scale. The study is limited by its coarse temporal resolution (comparing relatively short term air quality measurements to annual asthma health data) and interpretation of findings is complicated by contrasts in population demographics and health-care delivery systems in Detroit and Windsor.Journal of Exposure Science and Environmental Epidemiology advance online publication, 13 November 2013; doi:10.1038/jes.2013.78.
    Journal of Exposure Science and Environmental Epidemiology 11/2013; 24(4). DOI:10.1038/jes.2013.78 · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The thermal stability of poly(sodium 4-styrenesulfonate) intercalated graphite oxide has been investigated using a differential scanning calorimeter. The poly(sodium 4-styrenesulfonate) intercalated graphite oxide composite shows a prominent exothermic reaction near 207°C and an endothermic reaction near 453°C. Graphite oxide is responsible for the exothermic reaction while the endothermic reaction is caused by the poly(sodium 4-styrenesulfonate) used in the synthesis of poly(sodium 4-styrenesulfonate) intercalated graphite oxide. The onset temperature of the exothermic reaction of poly(sodium 4-styrenesulfonate) intercalated graphite oxide decreased by 92°C in comparison with that of graphite oxide, indicating the addition of poly(sodium 4-styrenesulfonate) in the composite has diminished the thermal stability of graphite oxide.
    Chemical Physics Letters 12/2011; DOI:10.1016/j.cplett.2011.10.038 · 1.99 Impact Factor