Nimbus (BgI): An active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata

Biomedical Research Institute (BRI), 12111 Parklawn Drive, Rockville, MD 20852, USA.
International Journal for Parasitology (Impact Factor: 3.4). 11/2007; 37(12):1307-18. DOI: 10.1016/j.ijpara.2007.04.002
Source: PubMed

ABSTRACT The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies. We previously cloned a 1.95kb BamHI fragment in B. glabrata (BGR2) with sequence similarity to the human long interspersed nuclear element (LINE or L1). A contiguous, full-length sequence corresponding to BGR2, hereafter-named nimbus (BgI), has been identified from a B. glabrata bacterial artificial chromosome (BAC) library. Sequence analysis of the 65,764bp BAC insert contained one full-length, complete nimbus (BgI) element (element I), two full-length elements (elements II and III) containing deletions and flanked by target site duplications and 10 truncated copies. The intact nimbus (BgI) contained two open-reading frames (ORFs 1 and 2) encoding the characteristic hallmark domains found in non-long terminal repeat retrotransposons belonging to the I-clade; a nucleic acid binding protein in ORF1 and an apurinic/apyrimidinic endonuclease, reverse transcriptase and RNase H in ORF2. Phylogenetic analysis revealed that nimbus (BgI) is closely related to Drosophila (I factor), mosquito Aedes aegypti (MosquI) and chordate ascidian Ciona intestinalis (CiI) retrotransposons. Nimbus (BgI) represents the first complete mobile element characterised from a mollusk that appears to be transcriptionally active and is widely distributed in snails of the neotropics and the Old World.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abdominal segment deformity disease (ASDD) of cultivated whiteleg shrimp Penaeus (Litopenaeus) vannamei causes economic loss of approximately 10% in affected specimens because of the unsightliness of distorted abdominal muscles. It is associated with the presence of viral-like particles seen by electron microscopy in the ventral nerve cords of affected shrimp. Thus, shotgun cloning was carried out to seek viral-like sequences in affected shrimp. A new retrovirus-like element of 5052 bp (named abdominal segment deformity element or ASDE) was compiled by shotgun cloning and 3[prime] and 5[prime] RACE using RNA and DNA extracted from ventral nerve cords of ASDD shrimp. ASDE contained 7 putative open reading frames (ORF). One ORF (called the PENS sub-domain), had a deduced amino acid (aa) sequence homologous to the GIY-YIG endonuclease domain of penelope-like retrotransposons while two others were homologous to the reverse transcriptase (RT) and RNaseH domains of the pol gene of non-long terminal repeat (non-LTR) retrotransposons (called the NLRS sub-domain). No single amplicon of 5 kb containing both these elements was obtained by PCR or RT-PCR from ASDD shrimp. Subsequent analysis indicated that PENS and NLRS were not contiguous and that NLRS was a host genetic element. In situ hybridization using a dioxygenin-labeled NLRS probe revealed that NLRS gave positive reactions in abdominal-ganglion neurons of ASDD shrimp but not normal shrimp. Preliminary analysis indicated that long-term use of female broodstock after eyestalk ablation in the hatchery increased the intensity of RT-PCR amplicons for NLRS and also the prevalence of ASDD in mysis 3 offspring of the broodstock. The deformities persist upon further cultivation until shrimp harvest but do not increase in prevalence and do not affect growth or survival. Our results suggested that NLRS is a shrimp genetic element associated with ASDD and that immediate preventative measures could include shorter-term use of broodstock after eyestalk ablation and/or discard of broodstock that give strong RT-PCR reactions for NLRS. In the longer term, it is recommended, if possible, that currently used, domesticated shrimp lines be selected for freedom from NLRS. The molecular tools developed in this work will facilitate the management and further study of ASDD.
    BMC Veterinary Research 09/2013; 9(1):189. DOI:10.1186/1746-6148-9-189 · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Biomphalaria glabrata is the mollusc intermediate host for Schistosoma mansoni, a digenean flatworm parasite that causes human intestinal schistosomiasis. An estimated 200 million people in 74 countries suffer from schistosomiasis, in terms of morbidity this is the most severe tropical disease after malaria. Epigenetic information informs on the status of gene activity that is heritable, for which changes are reversible and that is not based on the DNA sequence. Epigenetic mechanisms generate variability that provides a source for potentially heritable phenotypic variation and therefore could be involved in the adaptation to environmental constraint. Phenotypic variations are particularly important in host-parasite interactions in which both selective pressure and rate of evolution are high. In this context, epigenetic changes are expected to be major drivers of phenotypic plasticity and co-adaptation between host and parasite. Consequently, with characterization of the genomes of invertebrates that are parasite vectors or intermediate hosts, it is also essential to understand how the epigenetic machinery functions to better decipher the interplay between host and parasite. Methods The CpGo/e ratios were used as a proxy to investigate the occurrence of CpG methylation in B. glabrata coding regions. The presence of DNA methylation in B. glabrata was also confirmed by several experimental approaches: restriction enzymatic digestion with isoschizomers, bisulfite conversion based techniques and LC-MS/MS analysis. Results In this work, we report that DNA methylation, which is one of the carriers of epigenetic information, occurs in B. glabrata; approximately 2% of cytosine nucleotides are methylated. We describe the methylation machinery of B. glabrata. Methylation occurs predominantly at CpG sites, present at high ratios in coding regions of genes associated with housekeeping functions. We also demonstrate by bisulfite treatment that methylation occurs in multiple copies of Nimbus, a transposable element. Conclusions This study details DNA methylation for the first time, one of the carriers of epigenetic information in B. glabrata. The general characteristics of DNA methylation that we observed in the B. glabrata genome conform to what epigenetic studies have reported from other invertebrate species.
    Parasites & Vectors 06/2013; 6(1):167. DOI:10.1186/1756-3305-6-167 · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomphalaria glabrata susceptibility to Schistosoma mansoni has a strong genetic component, offering the possibility for investigating host-parasite interactions at the molecular level, perhaps leading to novel control approaches. The identification, mapping and molecular characterization of genes that influence the outcome of parasitic infection in the intermediate snail host is, therefore, seen as fundamental to the control of schistosomiasis. To better understand the evolutionary processes driving disease resistance/susceptibility phenotypes, we previously identified polymorphic random amplification of polymorphic DNA (RAPD) and genomic Simple Sequence Repeats (gSSRs) from B. glabrata. In the present study we identified and characterized polymorphic expressed SSR markers (Bg-eSSR) from existing B. glabrata Expressed Sequence Tags (ESTs). Using these markers, and with previously identified gSSRs, genetic linkage mapping for parasite refractory and susceptibility phenotypes, the first known for B. glabrata, was initiated. Data mining of 54,309 EST, produced 660 eSSRs of which dinucleotide motifs (TA)n were the most common (37.88%), followed by trinucleotide (29.55%), mononucleotide (18.64%) and tetranucleotide (10.15%). Penta- and hexanucleotide motifs represented < 3% of the Bg-eSSRs identified. While the majority (71%) of Bg-eSSRs were monomorphic between resistant and susceptible snails, several were, however, useful for the construction of a genetic linkage map based on their inheritance in segregating F2 progeny snails derived from crossing juvenile BS-90 and NMRI snails. Polymorphic Bg-eSSRs assorted into six Linkage Groups (LGs) at a logarithm of odds (LOD) score of 3. Interestingly, the heritability of four markers (Prim1_910, Prim1_771, Prim6_1024 and Prim7_823) with juvenile snail resistance were, by t-test, significant (P < 0.05) while an allelic marker, Prim24_524, showed linkage with the juvenile snail susceptibility phenotype. On the basis of our results it is possible that the gene(s) controlling juvenile resistance and susceptibility to S. mansoni infection in B. glabrata are not only on the same linkage group but lie within a short distance (42 cM) of each other.
    International journal for parasitology 05/2013; DOI:10.1016/j.ijpara.2013.03.007 · 3.40 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014