Article

Targeted charge-reversal nanoparticles for nuclear drug delivery.

Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of Wyoming, Laramie, WY 82071, USA.
Angewandte Chemie International Edition (Impact Factor: 11.34). 02/2007; 46(26):4999-5002. DOI: 10.1002/anie.200605254
Source: PubMed
0 Bookmarks
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A tumor-acidity-activated charge-conversional polyionic complex nanoparticle system was developed by simply mixing a pair of oppositely charged block copolymers: anionic methoxy poly(ethylene glycol)-b-poly(l-glutamic acid-co-l-phenylalanine) (mPEG-b-P(Glu-co-Phe)) and cationic methoxy poly(ethy1ene glycol)-b-poly(l-lysine-co-l-phenylalanine) (mPEG-b-P(Lys-co-Phe)). The nanoparticles could stay negatively charged under normal physiological pH value and reverse the surface charge to positive at the tumor extracellular environment. Doxorubicin (DOX) was encapsulated into the nanoparticles fabricated by a self-assembly process, and the DOX-loaded polyionic complex nanoparticles (DOX-NPs) retained the charge-conversional property. In vitro DOX release study demonstrated that DOX release was promoted by the significantly increased acidity in endosomes and lysosomes (pH ≈ 5–6). Cellular uptake studies confirmed that the DOX-NPs could be more effectively internalized by cells at the tumor extracellular pH value. In vitro cytotoxicity assays demonstrated that the polyionic complex nanoparticles had good biocompatibility, and DOX-NPs showed efficient cell proliferation inhibition to HeLa and A549 tumor cells. Maximum tolerated dose (MTD) studies revealed that DOX-NPs had a significantly higher MTD (more than 25 mg of DOX/kg) in mice compared to that for free DOX (5 mg of DOX/kg). Furthermore, DOX-NPs showed superior antitumor activity and reduced side toxicity compared to free DOX in A549 tumor bearing nude mice.
    Molecular Pharmaceutics 04/2014; 11(5):1562–1574. · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel amphiphilic copolymer, poly (ethylene glycol)-graft-polyethyleneimine/amide (PEG-g-PEI/amide), is synthesized by grafting PEG and1,2-cis-Cyclohexanedicarboxylic anhydride onto the PEI. PEGylated polymeric micelles can be assembled from the amphiphilic copolymers with well-defined nano-sizes, and anti-cancer drugs are successfully loaded into micelle core formed by the amide. The amides with neighboring carboxylic acid groups exhibit pH-dependent hydrolysis and can reversibly shield the cationic charge of amine groups on the PEI, giving the micelles a charge-conversion property from negative to positive in acidic tumor tissue environment. Meanwhile, the cleavage of amide bonds at acidic pH also results in the disassembly of the micelle and pH-responsive drug release. These micelles are promising drug delivery systems due to their smart properties: PEGylation, suitable size, charge-conversion, and simultaneous pH-sensitive drug release.
    Macromolecular Bioscience 05/2014; · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles have displayed considerable promise for safely delivering therapeutic agents with miscellaneous therapeutic properties. Current progress in nanotechnology has put forward, in the last few years, several therapeutic strategies that could be integrated into clinical use by using constructs for molecular diagnosis, disease detection, cytostatic drug delivery, and nanoscale immunotherapy. In the hope of bringing the concept of nanopharmacology toward a viable and feasible clinical reality in a cancer center, the present report attempts to present the grounds for the use of cell-free nanoscale structures for molecular therapy in experimental hematology and oncology.
    International Journal of Nanomedicine 01/2014; 9:3465-3479. · 4.20 Impact Factor