Microfluidic devices for size-dependent separation of liver cells.

Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
Biomedical Microdevices (Impact Factor: 2.72). 11/2007; 9(5):637-45. DOI: 10.1007/s10544-007-9055-5
Source: PubMed

ABSTRACT Liver is composed of various kinds of cells, including hepatic parenchymal cells (hepatocytes) and nonparenchymal cells, and separation of these cells is essential for cellular therapies and pharmacological and metabolic studies. Here, we present microfluidic devices for purely hydrodynamic and size-dependent separation of liver cells, which utilize hydrodynamic filtration. By continuously introducing cell suspension into a microchannel with multiple side-branch channels, cells smaller than a specific size are removed from the mainstream, while large cells are focused onto a sidewall in the microchannel and then separated into two or three groups. Two types of PDMS-glass hybrid microdevices were fabricated, and rat liver cells were successfully separated. Also, cell size, morphology, viability and several cell functions were analyzed, and the separation performances of the microfluidic devices were compared to that of a conventional centrifugal technique. The results showed that the presented microfluidic devices are low-cost and suitable for clinical use, and capable of highly functional separation with relatively high-speed processing.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Micropipette aspiration (MA) has been used extensively in biomechanical investigations of un-adhered cells suspended in media. In the current study, a custom MA system is developed to aspirate substrate adhered spread cells. Additionally, the system facilitates immuno-fluorescent staining of aspirated cells to investigate stress fibre redistribution and nucleus deformation during MA. In response to an applied pressure, significantly lower aspiration length is observed for untreated contractile cells compared to cells in which actin polymerisation is chemically inhibited, demonstrating the important contribution of stress fibres in the biomechanical behaviour of spread cells. Additional experiments are performed in which untreated contractile cells are subjected to a range of applied pressures. Computational finite element simulations reveal that a viscoelastic material model for the cell cytoplasm is incapable of accurately predicting the observed aspiration length over the range of applied pressures. It is demonstrated that an active computational framework that incorporates stress fibre remodelling and contractility must be used in order to accurately simulate MA of untreated spread cells. Additionally, the stress fibre distribution observed in immuno-fluorescent experimental images of aspirated cells is accurately predicted using the active stress fibre modelling framework. Finally, a detailed experimental-computational investigation of the nucleus mechanical behaviour demonstrates that the nucleus is highly deformable in cyto, reaching strain levels in excess of 100% during MA. The characterisation of stress fibres and nucleus biomechanics in spread cells presented in the current study can potentially be used to guide tissue engineering strategies to control cell behaviour and gene expression.
    Biomaterials 02/2014; · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver has many complex physiological functions, including lipid, protein and carbohydrate metabolism, as well as bile and urea production. It detoxifies toxic substances and medicinal products. It also plays a key role in the onset and maintenance of abnormal metabolic patterns associated with various disease states, such as burns, infections and major traumas. Liver cells have been commonly used in in vitro experiments to elucidate the toxic effects of drugs and metabolic changes caused by aberrant metabolic conditions, and to improve the functions of existing systems, such as bioartificial liver. More recently, isolated liver perfusion systems have been increasingly used to characterize intrinsic metabolic changes in the liver caused by various perturbations, including systemic injury, hepatotoxin exposure and warm ischemia. Metabolic engineering tools have been widely applied to these systems to identify metabolic flux distributions using metabolic flux analysis or flux balance analysis and to characterize the topology of the networks using metabolic pathway analysis. In this context, hepatic metabolic models, together with experimental methodologies where hepatocytes or perfused livers are mainly investigated, are described in detail in this review. The challenges and opportunities are also discussed extensively.
    Metabolites. 01/2012; 2(1):268-91.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications.
    Biomicrofluidics 03/2014; 8(2):024108. · 3.39 Impact Factor