Article

Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes.

Div. of Metrology for Quality Life, Korea Research Institute of Standards and Science, Yuseong P. O. Box 102, Daejeon, 305-600, Korea.
Chemical Communications (Impact Factor: 6.38). 05/2007; DOI: 10.1039/b617608a
Source: PubMed

ABSTRACT Bi-functional nanoparticles (NPs) that consist of silica-coated magnetic cores and luminescent lanthanide (Ln) ions anchored on the silica surface via organic linker molecules are reported. Compared to individual Ln ions, the hybrid NPs show a drastically enhanced photoluminescence due to the efficient ligand-to-metal energy transfer in the Ln-loaded NPs: the new bi-functional NPs could be used in a variety of biological applications involving magnetic separation and optical detection.

0 Bookmarks
 · 
145 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many applications require nanoparticles that exhibit high magnetic moment and luminescence. Compounds exhibiting this combination of properties do not exist. However, this combination of properties may be obtained by nanocomposites. There are two possible configurations for these composites: the core-shell design, leading to the smallest composite particles, and agglomerates containing separated particles with the properties in question. The magnetic core is, in most cases, maghemite or magnetite, whereas the luminescence carrier is either an organic molecule or an inorganic quantum dot. One of the basic problems in designing such composites, to be overcome by the appropriate layout choice, is the potential incompatibility between the magnetic core and the lumophore. Experimentally realized solutions of these problems are presented.
    Advanced Materials 10/2010; 22(39):4410-5. · 14.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Results of experimental investigations are reported for the gas-phase kinetics of chemical reactions between nitrogen dioxide (NO(2)) and 14 different atomic cations of the lanthanide series, Ln(+) (Ln = La-Lu, excluding Pm), and their monoxides, LnO(+). Measurements were taken with an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer in helium buffer-gas at a pressure of 0.35 +/- 0.01 Torr and at 295 +/- 2 K. The atomic lanthanide cations were produced at ca. 5500 K in an ICP source and allowed to decay radiatively and to thermalize by collisions with Ar and He atoms prior to reaction with NO(2). The atomic ions were observed to react rapidly with NO(2) with large rate coefficients, k > 2 x 10(-10) cm(3) molecule(-1) s(-1), and almost exclusively by oxygen-atom abstraction to produce lanthanide-oxide LnO(+) cations. In contrast to results of previous studies with many other molecules, the reaction efficiency exhibits essentially no dependence upon the energy required to promote an electron to achieve a d(1)s(1) excited electronic configuration, in which two non-f electrons are available to Ln(+) for chemical bonding. Apparently the radical character of NO(2) (X (2)A(1)) leads to the efficient formation of LnO(+) by the end-on abstraction of an oxygen atom by Ln(+). In the reactions with La(+), Ce(+), Pr(+) and Gd(+) an additional minor channel (less than 2%) leads to the formation of NO(+). The LnO(+) product ions participate in various secondary and higher order reactions with NO(2) resulting in the formation of ions of the type LnO(x)(NO)(y)(NO(2))(z)(+) with x = 1-2, y = 0-2, and z = 0-2, as well as the ions NO(+) and NO(2)(+).
    Physical Chemistry Chemical Physics 05/2010; 12(18):4852-62. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present here comparative assessments of murine lung toxicity (biocompatibility) after in vitro and in vivo exposures to carbon (C-SiO2-etched), carbon-silica (C-SiO2), carbon-cobalt-silica (C-Co-SiO2), and carbon-cobalt oxide-silica (C-Co3O4-SiO2) nanoparticles. These nanoparticles have potential applications in clinical medicine and bioimaging, and thus their possible adverse events require thorough investigation. The primary aim of this work was to explore whether the nanoparticles are biocompatible with pneumatocyte bioenergetics (cellular respiration and adenosine triphosphate content). Other objectives included assessments of caspase activity, lung structure, and cellular organelles. Pneumatocyte bioenergetics of murine lung remained preserved after treatment with C-SiO2-etched or C-SiO2 nanoparticles. C-SiO2-etched nanoparticles, however, increased caspase activity and altered lung structure more than C-SiO2 did. Consistent with the known mitochondrial toxicity of cobalt, both C-Co-SiO2 and C-Co3O4-SiO2 impaired lung tissue bioenergetics. C-Co-SiO2, however, increased caspase activity and altered lung structure more than C-Co3O4-SiO2. The results indicate that silica shell is essential for biocompatibility. Furthermore, cobalt oxide is the preferred phase over the zerovalent Co(0) phase to impart biocompatibility to cobalt-based nanoparticles.
    International Journal of Nanomedicine 01/2013; 8:1223-44. · 4.20 Impact Factor