Crystal structure of an asymmetric complex of pyruvate dehydrogenase kinase 3 with lipoyl domain 2 and its biological implications.

Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine and Dentistry, Kaul Genetics Building, Birmingham, Al 35294, USA.
Journal of Molecular Biology (Impact Factor: 3.96). 08/2007; 370(3):407-16. DOI: 10.1016/j.jmb.2007.04.083
Source: PubMed

ABSTRACT A homodimer of pyruvate dehydrogenase kinase (PDHK) is an integral part of pyruvate dehydrogenase complex (PDC) to which it is anchored primarily through the inner lipoyl-bearing domains (L2) of transacetylase component. The catalytic cycle of PDHK and its translocation over the PDC surface is thought to be mediated by the "symmetric" and "asymmetric" modes, in which the PDHK dimer binds to two and one L2-domain(s), respectively. Whereas the structure of the symmetric PDHK/L2 complex was reported, the structural organization and functional role of the asymmetric complex remain obscure. Here, we report the crystal structure of the asymmetric PDHK3/L2 complex that reveals several functionally important features absent from the previous structures. First, the PDHK3 subunits have distinct conformations: one subunit exhibits "open" and the other "closed" configuration of the putative substrate-binding cleft. Second, access to the closed cleft is additionally restricted by local unwinding of the adjacent alpha-helix. Modeling indicates that the target peptide might gain access to the PDHK active center through the open but not through the closed cleft. Third, the ATP-binding loop in one PDHK3 subunit adopts an open conformation, implying that the nucleotide loading into the active site is mediated by the inactive "pre-insertion" binding mode. Altogether our data suggest that the asymmetric complex represents a physiological state in which binding of a single L2-domain activates one of the PDHK protomers while inactivating another. Thus, the L2-domains likely act not only as the structural anchors but also modulate the catalytic cycle of PDHK.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The pyruvate dehydrogenase complexes (PDCs) from all known living organisms comprise three principal catalytic components for their mission: E1 and E2 generate acetyl-Coenzyme A, while the FAD/NAD+-dependent E3 performs redox recycling. Here we compare a bacterial (E. coli) and human PDCs, as they represent the two major classes of the superfamily of 2-oxo acid dehydrogenase complexes with different assembly of, and interactions among components. The human PDC is subject to inactivation at E1 by serine phosphorylation by four kinases, an inactivation reversed by the action of two phosphatases. Progress in our understanding of these complexes important in metabolism is reviewed.
    Journal of Biological Chemistry 05/2014; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
    Cellular and Molecular Life Sciences CMLS 12/2013; · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary motor and sensory disorders of the peripheral nerve form one of the most common groups of human genetic diseases collectively called Charcot-Marie-Tooth (CMT) neuropathy. Using linkage analysis in a three generation kindred we have mapped a new locus for X-linked dominant CMT to chromosome Xp22.11. A microsatellite scan of the X chromosome established significant linkage to several markers including DXS993 (Zmax=3.16; θ=0.05). Extended haplotype analysis refined the linkage region to a 1.43-Mb interval flanked by markers DXS7110 and DXS8027. Whole exome sequencing identified a missense mutation c.G473A (p.R158H) in the pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) gene. The change localised within the 1.43-Mb linkage interval, segregated with the affected phenotype, and was excluded in ethnically matched control chromosomes. PDK3 is one of 4 isoenzymes regulating the pyruvate dehydrogenase complex (PDC), by reversible phosphorylation and is a nuclear-coded protein located in the mitochondrial matrix. PDC catalyzes the oxidative decarboxylation of pyruvate to acetyl CoA and is a key enzyme linking glycolysis to the energy-producing Krebs cycle and lipogenic pathways. We found that the R158H mutation confers enzyme hyperactivity and binds with stronger affinity than the wild-type to the inner-lipoyl (L2) domain of the E2p chain of PDC. Our findings suggest a reduced pyruvate flux due to R158H mutant PDK3-mediated hyper-phosphorylation of the PDC as the underlying pathogenic cause of peripheral neuropathy. The results highlight an important causative link between peripheral nerve degeneration and an essential bioenergetic or biosynthetic pathway required for the maintenance of peripheral nerves.
    Human Molecular Genetics 01/2013; · 6.68 Impact Factor


Available from