Article

RNA helicase A interacts with RISC in human cells and functions in RISC loading.

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Molecular Cell (Impact Factor: 14.46). 06/2007; 26(4):523-37. DOI: 10.1016/j.molcel.2007.04.016
Source: PubMed

ABSTRACT RNA interference is a conserved pathway of sequence-specific gene silencing that depends on small guide RNAs and the action of proteins assembled in the RNA-induced silencing complex (RISC). Minimally, the action of RISC requires the endonucleolytic slicer activity of Argonaute2 (Ago2) directed to RNA targets whose sequences are complementary to RISC-incorporated small RNA. To identify RISC components in human cells, we developed an affinity-purification strategy to isolate siRNA-programmed RISC. Here we report the identification of RNA helicase A (RHA) as a human RISC-associated factor. We show that RHA interacts in human cells with siRNA, Ago2, TRBP, and Dicer and functions in the RNAi pathway. In RHA-depleted cells, RNAi was reduced as a consequence of decreased intracellular concentration of active RISC assembled with the guide-strand RNA and Ago2. Our results identify RHA as a RISC component and demonstrate that RHA functions in RISC as an siRNA-loading factor.

0 Bookmarks
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Venezuelan equine encephalitis virus (VEEV) is classified as a Category B Select Agent and potential bioterror weapon for its severe disease course in humans and equines and its potential for aerosol transmission. There are no current FDA licensed vaccines or specific therapies against VEEV, making identification of potential therapeutic targets a priority. With this aim, our research focuses on the interactions of VEEV with host microRNA (miRNA) machinery. miRNAs are small non-coding RNAs that act as master regulators of gene expression by downregulating or degrading messenger RNA, thus suppressing production of the resultant proteins. Recent publications implicate miRNA interactions in the pathogenesis of various viral diseases. To test the importance of miRNA processing for VEEV replication, cells deficient in Ago2, an important component of the RNA-induced silencing complex (RISC), and cells treated with known Ago2 inhibitors, notably acriflavine (ACF), were utilized. Both conditions caused decreased viral replication and capsid expression. ACF treatment promoted increased survival of neuronal cells over a non-treated, infected control and reduced viral titers of fully virulent VEEV as well as Eastern and Western Equine Encephalitis Viruses and West Nile Virus, but not Vesicular Stomatitis Virus. ACF treatment of VEEV TC-83 infected mice resulted in increased in vivo survival, but did not affect survival or viral loads when mice were challenged with fully virulent VEEV TrD. These results suggest that inhibition of Ago2 results in decreased replication of encephalitic alphaviruses in vitro and this pathway may be an avenue to explore for future therapeutic development.
    Antiviral Research 10/2014; 112. DOI:10.1016/j.antiviral.2014.10.002 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background RNA interference (RNAi) leads to sequence specific knock-down of gene expression and has emerged as an important tool to analyse gene functions, pathway analysis and gene therapy. Although RNAi is a conserved cellular process involving common elements and factors, species-specific differences have been observed among different eukaryotes. Identification of components for RNAi pathway is pursued intensively and successful genome-wide screens have been performed for components of RNAi pathways in various organisms. Functional comparative genomics analysis offers evolutionary insight that forms basis of discoveries of novel RNAi-factors within related organisms. Keeping in view the academic and commercial utility of insect derived cell-line from Spodoptera frugiperda, we pursued the identification and functional analysis of components of RNAi-machinery of Sf21 cell-line using genome-wide application. Results The Genome and transcriptome of Sf21 was assembled and annotated. In silico application of comparative genome analysis among insects allowed us to identify several RNAi factors in Sf21 line. The candidate RNAi factors from assembled genome were validated by knockdown analysis of candidate factors using the siRNA screens on the Sf21-gfp reporter cell-line. Forty two (42) potential factors were identified using the cell based assay. These include core RNAi elements including Dicer-2, Argonaute-1, Drosha, Aubergine and auxiliary modules like chromatin factors, RNA helicases, RNA processing module, signalling allied proteins and others. Phylogenetic analyses and domain architecture revealed that Spodoptera frugiperda homologs retained identity with Lepidoptera (Bombyx mori) or Coleoptera (Tribolium castaneum) sustaining an evolutionary conserved scaffold in post-transcriptional gene silencing paradigm within insects. Conclusion The database of RNAi-factors generated by whole genome association survey offers comprehensive outlook about conservation as well as specific differences of the proteins of RNAi machinery. Understanding the interior involved in different phases of gene silencing also offers impending tool for RNAi-based applications.
    BMC Genomics 09/2014; 2014(15):775. DOI:10.1186/1471-2164-15-775 · 4.04 Impact Factor
  • Source

Preview

Download
0 Downloads
Available from