Adult bone marrow-derived cells for cardiac repair - A systematic review and meta-analysis

Harvard University, Cambridge, Massachusetts, United States
Archives of Internal Medicine (Impact Factor: 13.25). 05/2007; 167(10):989-97. DOI: 10.1001/archinte.167.10.989
Source: PubMed

ABSTRACT The results from small clinical studies suggest that therapy with adult bone marrow (BM)-derived cells (BMCs) reduces infarct size and improves left ventricular function and perfusion. However, the effects of BMC transplantation in patients with ischemic heart disease remains unclear.
We searched MEDLINE, EMBASE, Science Citation Index, CINAHL (Cumulative Index to Nursing and Allied Health), and the Cochrane Central Register of Controlled Trials (CENTRAL) (through July 2006) for randomized controlled trials and cohort studies of BMC transplantation to treat ischemic heart disease. We conducted a random-effects meta-analysis across eligible studies measuring the same outcomes.
Eighteen studies (N = 999 patients) were eligible. The adult BMCs included BM mononuclear cells, BM mesenchymal stem cells, and BM-derived circulating progenitor cells. Compared with controls, BMC transplantation improved left ventricular ejection fraction (pooled difference, 3.66%; 95% confidence interval [CI], 1.93% to 5.40%; P<.001); reduced infarct scar size (-5.49%; 95% CI, -9.10% to -1.88%; P = .003); and reduced left ventricular end-systolic volume (-4.80 mL; 95% CI, -8.20 to -1.41 mL; P = .006).
The available evidence suggests that BMC transplantation is associated with modest improvements in physiologic and anatomic parameters in patients with both acute myocardial infarction and chronic ischemic heart disease, above and beyond conventional therapy. Therapy with BMCs seems safe. These results support conducting large randomized trials to evaluate the impact of BMC therapy vs the standard of care on patient-important outcomes.

  • 08/2014; 28(4):71-77.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously showed that injection of peptide nanofibers (NF) combined with autologous bone marrow mononuclear cells (MNC) immediately after coronary artery ligation improves cardiac performance in pigs. To evaluate the clinical feasibility, this study was performed to determine the therapeutic time window for NF/MNC therapy in acute myocardial infarction (MI). A total of 45 adult minipigs were randomly grouped into 7 groups: sham or MI plus treatment with NS (normal saline), or NF or MNC alone at 1 day (1D) post-MI, or NF/MNC at 1, 4, or 7 days post-MI (N≥6). Cardiac function was assessed by echocardiography and ventricular catheterization. Compared with the NS control, pigs treated with NF/MNC at 1 day post-MI (NF/MC-1D) had the greatest improvement in left ventricle ejection fraction (LVEF; 55.1±1.6%; P<0.01 vs. NS) 2 months after MI. In contrast, pigs treated with either NF/MNC-4D or NF/MNC-7D showed 48.9±0.8% (P<0.05 vs. NS) and 43.5±2.3% (n.s. vs. NS) improvements, respectively. The +dP/dt and -dP/dt, infarct size and interstitial collagen content were also improved in the NF/MNC-1D and -4D groups but not in the -7D group. Mechanistically, MNC quality and the states of systemic inflammation and damaged heart tissue influence the therapeutic efficiency of NF/MNC therapy, as revealed by another independent study using 16 pigs. Injection of NF/MNC at 1 or 4 days, but not at 7 days post-MI, improves cardiac performance and prevents ventricular remodeling, confirming the importance of early intervention when using this therapy for acute MI.
    PLoS ONE 03/2015; 10(3):e0115430. DOI:10.1371/journal.pone.0115430 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last years, stem cell therapy has emerged as an inspiring alternative to restore cardiac function after myocardial infarction. A large body of evidence has been obtained in this field but there is no conclusive data on the efficacy of these treatments. Preclinical studies and early reports in humans have been encouraging and have fostered a rapid clinical translation, but positive results have not been uniformly observed and when present, they have been modest. Several types of stem cells, manufacturing methods and delivery routes have been tested in different clinical settings but direct comparison between them is challenging and hinders further research. Despite enormous achievements, major barriers have been found and many fundamental issues remain to be resolved. A better knowledge of the molecular mechanisms implicated in cardiac development and myocardial regeneration is critically needed to overcome some of these hurdles. Genetic and pharmacological priming together with the discovery of new sources of cells have led to a "second generation" of cell products that holds an encouraging promise in cardiovascular regenerative medicine. In this report, we review recent advances in this field focusing on the new types of stem cells that are currently being tested in human beings and on the novel strategies employed to boost cell performance in order to improve cardiac function and outcomes after myocardial infarction.
    03/2015; 7(2):352-367. DOI:10.4252/wjsc.v7.i2.352

Full-text (2 Sources)

Available from
May 30, 2014