Article

Role of STAT5a in regulation of sex-specific gene expression in female but not male mouse liver revealed by microarray analysis.

Division of Cell and Molecular Biology, Department of Biology, Boston University, Massachusetts, USA.
Physiological Genomics (Impact Factor: 2.81). 09/2007; 31(1):63-74. DOI: 10.1152/physiolgenomics.00055.2007
Source: PubMed

ABSTRACT Sexual dimorphism in mammalian liver impacts genes affecting hepatic physiology, including inflammatory responses, diseased states, and the metabolism of steroids and foreign compounds. Liver sex specificity is dictated by sex differences in pituitary growth hormone (GH) secretion, with the transcription factor signal transducer and activator of transcription (STAT)5b required for intracellular signaling initiated by the pulsatile male plasma GH profile. STAT5a, a minor liver STAT5 form >90% identical to STAT5b, also responds to sexually dimorphic plasma GH stimulation but is unable to compensate for the loss of STAT5b and the associated loss of sex-specific liver gene expression. A large-scale gene expression study was conducted using 23,574-feature oligonucleotide microarrays and livers of male and female mice, both wild-type and Stat5a-inactivated mice, to elucidate any dependence of liver gene expression on STAT5a. Significant sex differences in expression were found for 2,482 mouse genes, 1,045 showing higher expression in males and 1,437 showing higher expression in females. In contrast to the widespread effects of the loss of STAT5b, STAT5a deficiency had a limited but well-defined impact on liver sex specificity, with 219 of 1,437 female-predominant genes (15%) specifically decreased in expression in STAT5a-deficient female liver. Analysis of liver RNAs from wild-type mice representing three mixed or outbred strains identified 1,028 sexually dimorphic genes across the strains, including 393 female-predominant genes, of which 89 (23%) required STAT5a for normal expression in female liver. These findings highlight the importance of STAT5a for regulation of sex-specific gene expression specifically in female liver, in striking contrast to STAT5b, whose major effects are restricted to male liver.

Full-text

Available from: William J Ray, Feb 28, 2014
0 Followers
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detoxification of ingested xenobiotic chemicals, and of potentially toxic endogenous metabolites, is carried out largely through a series of enzymes synthesized in the liver, sometimes called "xenobiotic metabolizing enzymes" (XME). Expression of these XME is sexually dimorphic in rodents and humans, with many of the XME expressed at higher levels in females. This expression pattern is thought to be regulated, in part, by the sex differences in circadian growth hormone (GH) pulsatility. We have evaluated mRNA, in the liver, for 52 XME genes in male and female mice of four mutant stocks, with diminished levels of GH receptor (GHR) either globally (GKO), or in liver (LKO), fat (FKO), or muscle (MKO) tissue specifically. The data show complex, sex-specific changes. For some XME, the expression pattern is consistent with direct control of hepatic mRNA by GHR in the liver. In contrast, other XME show evidence for indirect pathways in which hepatic XME expression is altered by GH signals in fat or skeletal muscle. The effects of GHR-null mutations on glucose control, responses to dietary interventions, steroid metabolism, detoxification pathways and lifespan may depend on a mixture of direct hepatic effects and cross-talk between different GH-responsive tissues.
    AJP Endocrinology and Metabolism 08/2013; 305(8). DOI:10.1152/ajpendo.00304.2013 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many hepatic functions including lipid metabolism, drug metabolism, and inflammatory responses are regulated in a sex-specific manner due to distinct patterns of hepatic gene expression between males and females. Regulation for the majority of these genes is under control of Nuclear Receptors (NRs). Retinoid X Receptor alpha (RXRα) is an obligate partner for multiple NRs and considered a master regulator of hepatic gene expression, yet the full extent of RXRα chromatin binding in male and female livers is unclear. ChIP-Seq analysis of RXRα and RNA Polymerase2 (Pol2) binding was performed livers of both genders and combined with microarray analysis. Mice were gavage-fed with the RXR ligand LG268 for 5 days (30 mg/kg/day) and RXRα-binding and RNA levels were determined by ChIP-qPCR and qPCR, respectively. ChIP-Seq revealed 47,845 (male) and 46,877 (female) RXRα binding sites (BS), associated with ∼12,700 unique genes in livers of both genders, with 91% shared between sexes. RXRα-binding showed significant enrichment for 2227 and 1498 unique genes in male and female livers, respectively. Correlating RXRα binding strength with Pol2-binding revealed 44 genes being male-dominant and 43 female-dominant, many previously unknown to be sexually-dimorphic. Surprisingly, genes fundamental to lipid metabolism, including Scd1, Fasn, Elovl6, and Pnpla3-implicated in Fatty Liver Disease pathogenesis, were predominant in females. RXRα activation using LG268 confirmed RXRα-binding was 2-3 fold increased in female livers at multiple newly identified RXRα BS including for Pnpla3 and Elovl6, with corresponding ∼10-fold and ∼2-fold increases in Pnpla3 and Elovl6 RNA respectively in LG268-treated female livers, supporting a role for RXRα regulation of sexually-dimorphic responses for these genes. RXRα appears to be one of the most widely distributed transcriptional regulators in mouse liver and is engaged in determining sexually-dimorphic expression of key lipid-processing genes, suggesting novel gender- and gene-specific responses to NR-based treatments for lipid-related liver diseases.
    PLoS ONE 08/2013; 8(8):e71538. DOI:10.1371/journal.pone.0071538 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cholestasis results from interrupted bile flow and associates with immune-mediated liver diseases. It is unclear how inflammation contributes to cholestasis. The aim of this study was to determine whether T and B cells contribute to hepatic transporter expression under basal and inflammatory conditions. C57BL/6J wild-type (WT) mice or strains lacking T, B, or both T and B cells were exposed to lipopolysaccharide (LPS) or saline, and the livers were collected 16 h later. Branched DNA signal amplification was used to assess mRNA levels of organic anion-transporting polypeptides (Oatp) 1a1, 1a4, and 1b2, organic cation transporter (Oct) 1, canalicular bile salt export pump (Bsep), multidrug resistance-associated proteins (Mrp) 2 and 3, and the sodium-taurocholate co-transporting polypeptide (Ntcp). Real-time polymerase chain reaction analyses was used to correlate changes of transporter expression with interleukin (IL)-1b, IL-6, IL-17A, IL-17F, tumor necrosis factor (TNF)-αand interferon (IFN)-γ expression in the liver. LPS treatment inhibited Bsep and Oct1 mRNA expression, and this was abrogated with a loss of T cells but not B cells. In addition, the absence of T cells increased Mrp2 mRNA expression; whereas, B cell deficiency attenuated Oap1a4 mRNA in LPS treated mice. Oatp1a1, Oatp1b2, Ntcp, and Mrp3 were largely unaffected by T or B cell deficiency. Lymphocyte deficiency altered basal and inflammatory IL-6, but not TNF-α or IL-1b, mRNA expression. Taken together, these data implicate lymphocytes as regulators of basal and inflammatory hepatic transporter expression and suggest that IL-6 signaling may play a critical role.
    Journal of Pharmacology and Experimental Therapeutics 08/2013; DOI:10.1124/jpet.113.205369 · 3.86 Impact Factor