Clodfelter, K. H. et al. Role of STAT5a in regulation of sex-specific gene expression in female but not male mouse liver revealed by microarray analysis. Physiol. Genomics 31, 63-74

Division of Cell and Molecular Biology, Department of Biology, Boston University, Massachusetts, USA.
Physiological Genomics (Impact Factor: 2.37). 09/2007; 31(1):63-74. DOI: 10.1152/physiolgenomics.00055.2007
Source: PubMed


Sexual dimorphism in mammalian liver impacts genes affecting hepatic physiology, including inflammatory responses, diseased states, and the metabolism of steroids and foreign compounds. Liver sex specificity is dictated by sex differences in pituitary growth hormone (GH) secretion, with the transcription factor signal transducer and activator of transcription (STAT)5b required for intracellular signaling initiated by the pulsatile male plasma GH profile. STAT5a, a minor liver STAT5 form >90% identical to STAT5b, also responds to sexually dimorphic plasma GH stimulation but is unable to compensate for the loss of STAT5b and the associated loss of sex-specific liver gene expression. A large-scale gene expression study was conducted using 23,574-feature oligonucleotide microarrays and livers of male and female mice, both wild-type and Stat5a-inactivated mice, to elucidate any dependence of liver gene expression on STAT5a. Significant sex differences in expression were found for 2,482 mouse genes, 1,045 showing higher expression in males and 1,437 showing higher expression in females. In contrast to the widespread effects of the loss of STAT5b, STAT5a deficiency had a limited but well-defined impact on liver sex specificity, with 219 of 1,437 female-predominant genes (15%) specifically decreased in expression in STAT5a-deficient female liver. Analysis of liver RNAs from wild-type mice representing three mixed or outbred strains identified 1,028 sexually dimorphic genes across the strains, including 393 female-predominant genes, of which 89 (23%) required STAT5a for normal expression in female liver. These findings highlight the importance of STAT5a for regulation of sex-specific gene expression specifically in female liver, in striking contrast to STAT5b, whose major effects are restricted to male liver.

Download full-text


Available from: William J Ray, Feb 28, 2014
26 Reads
  • Source
    • "However, a full regulatory assessment of hepatic sexually-dimorphic gene expression is not entirely explained by differences in GH, sex hormones and the above mentioned transcription factors. Moreover, many hepatic Phase I and Phase II drug-metabolizing and lipid-processing genes are differentially-expressed in males and females, some of these were identified as Stat5b-independent [11], [16], [22], and this may underlie gender-specific therapeutic drug responses, consequences of hepatic steatosis, and some adverse drug events in humans [23]–[26]. The majority of these genes are regulated by RXRα heterodimers, yet without a complete delineation of RXRα binding in male and female liver chromatin, knowledge of the underlying contributions of RXRα heterodimers to these pathways remains incomplete and impairs our ability to counter some of these clinically-relevant issues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Many hepatic functions including lipid metabolism, drug metabolism, and inflammatory responses are regulated in a sex-specific manner due to distinct patterns of hepatic gene expression between males and females. Regulation for the majority of these genes is under control of Nuclear Receptors (NRs). Retinoid X Receptor alpha (RXRα) is an obligate partner for multiple NRs and considered a master regulator of hepatic gene expression, yet the full extent of RXRα chromatin binding in male and female livers is unclear. ChIP-Seq analysis of RXRα and RNA Polymerase2 (Pol2) binding was performed livers of both genders and combined with microarray analysis. Mice were gavage-fed with the RXR ligand LG268 for 5 days (30 mg/kg/day) and RXRα-binding and RNA levels were determined by ChIP-qPCR and qPCR, respectively. ChIP-Seq revealed 47,845 (male) and 46,877 (female) RXRα binding sites (BS), associated with ∼12,700 unique genes in livers of both genders, with 91% shared between sexes. RXRα-binding showed significant enrichment for 2227 and 1498 unique genes in male and female livers, respectively. Correlating RXRα binding strength with Pol2-binding revealed 44 genes being male-dominant and 43 female-dominant, many previously unknown to be sexually-dimorphic. Surprisingly, genes fundamental to lipid metabolism, including Scd1, Fasn, Elovl6, and Pnpla3-implicated in Fatty Liver Disease pathogenesis, were predominant in females. RXRα activation using LG268 confirmed RXRα-binding was 2-3 fold increased in female livers at multiple newly identified RXRα BS including for Pnpla3 and Elovl6, with corresponding ∼10-fold and ∼2-fold increases in Pnpla3 and Elovl6 RNA respectively in LG268-treated female livers, supporting a role for RXRα regulation of sexually-dimorphic responses for these genes. RXRα appears to be one of the most widely distributed transcriptional regulators in mouse liver and is engaged in determining sexually-dimorphic expression of key lipid-processing genes, suggesting novel gender- and gene-specific responses to NR-based treatments for lipid-related liver diseases.
    PLoS ONE 08/2013; 8(8):e71538. DOI:10.1371/journal.pone.0071538 · 3.23 Impact Factor
  • Source
    • "STAT5b is an important determinant of growth hormone-mediated male-predominant gene expression [19], whereas STAT5a expression determines in part female-predominant gene expression [21]. Gender-predominant genes have been classified based on their expression behavior in wild-type vs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs was observed at early (GD19, PND7) and to a lesser extent, later life stages (18 and 24 months). A number of female-specific XMETs exhibited a spike in expression centered at PND7. The analysis revealed dramatic differences in the expression of the XMETs, especially in the fetus and neonate that are partially dependent on gender-dependent factors. XMET expression can be used to predict life stage-specific responses to environmental chemicals and drugs.
    PLoS ONE 09/2011; 6(9):e24381. DOI:10.1371/journal.pone.0024381 · 3.23 Impact Factor
  • Source
    • "The false discovery rate (FDR) was calculated as described previously (Clodfelter et al., 2007). Briefly, a filter of P<0.005 was applied for statistical significance. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The human REL proto-oncogene encodes a transcription factor in the nuclear factor (NF)-kappaB family. Overexpression of REL is acutely transforming in chicken lymphoid cells, but has not been shown to transform any mammalian lymphoid cell type. In this report, we show that overexpression of a highly transforming mutant of REL (RELDeltaTAD1) increases the oncogenic properties of the human B-cell lymphoma BJAB cell line, as shown by increased colony formation in soft agar, tumor formation in SCID (severe combined immunodeficient) mice, and adhesion. BJAB-RELDeltaTAD1 cells also show decreased activation of caspase in response to doxorubicin. BJAB-RELDeltaTAD1 cells have increased levels of active nuclear REL protein as determined by immunofluorescence, subcellular fractionation and electrophoretic mobility shift assay. Overexpression of RELDeltaTAD1 in BJAB cells has transformed the gene expression profile of BJAB cells from that of a germinal center B-cell subtype of diffuse large B-cell lymphoma (DLBCL) (GCB-DLBCL) to that of an activated B-cell subtype (ABC-DLBCL), as evidenced by increased expression of many ABC-defining mRNAs. Upregulated genes in BJAB-RELDeltaTAD1 cells include several NF-kappaB targets that encode proteins previously implicated in B-cell development or oncogenesis, including BCL2, IRF4, CD40 and VCAM1. The cell system we describe here may be valuable for further characterizing the molecular details of REL-induced lymphoma in humans.
    Oncogene 05/2009; 28(20):2100-11. DOI:10.1038/onc.2009.74 · 8.46 Impact Factor
Show more