Article

Sex chromosome silencing in the marsupial male germ line.

Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2007; 104(23):9730-5. DOI: 10.1073/pnas.0700323104
Source: PubMed

ABSTRACT In marsupials, dosage compensation involves silencing of the father's X-chromosome. Because no XIST orthologue has been found, how imprinted X-inactivation occurs is unknown. In eutherians, the X is subject to meiotic sex chromosome inactivation (MSCI) in the paternal germ line and persists thereafter as postmeiotic sex chromatin (PMSC). One hypothesis proposes that the paternal X is inherited by the eutherian zygote as a preinactive X and raises the possibility of a similar process in the marsupial germ line. Here we demonstrate that MSCI and PMSC occur in the opossum. Surprisingly, silencing occurs before X-Y association. After MSCI, the X and Y fuse through a dense plate without obvious synapsis. Significantly, sex chromosome silencing continues after meiosis, with the opossum PMSC sharing features of eutherian PMSC. These results reveal a common gametogenic program in two diverse clades of mammals and support the idea that male germ-line silencing may have provided an ancestral form of mammalian dosage compensation.

Full-text

Available from: Satoshi Namekawa, May 08, 2014
1 Follower
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pathways of monotremes by deep sequencing of six platypus and echidna tissues. We find that highly conserved microRNA species display their signature tissue-specific expression patterns. In addition, we find a large rapidly evolving cluster of microRNAs on platypus chromosome X1, which is unique to monotremes. Platypus and echidna testes contain a robust Piwi-interacting (piRNA) system, which appears to be participating in ongoing transposon defense.
    Genome Research 07/2008; 18(6):995-1004. DOI:10.1101/gr.073056.107 · 13.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flexible and fully disordered protein regions that fold upon binding mediate numerous protein-protein interactions. However, little is known about their mechanism of interaction. One such coupled folding and binding occurs when a flexible region of neuronal nitric oxide synthase adopts a β-finger structure upon binding to its protein ligand, a PDZ [PSD-95 (postsynaptic density protein-95)/Discs large/ZO-1] domain from PSD-95. We have analyzed this binding reaction by protein engineering combined with kinetic experiments. Mutational destabilization of the β-finger changed mainly the dissociation rate constant of the proteins and, to a lesser extent, the association rate constant. Thus, mutation affected late events in the coupled folding and binding reaction. Our results therefore suggest that the native binding interactions of the β-finger are not present in the rate-limiting transition state for binding but form on the downhill side in a cooperative manner. However, by mutation, we could destabilize the β-finger further and change the rate-limiting step such that an initial conformational change becomes rate limiting. This switch in rate-limiting step shows that multistep binding mechanisms are likely to be found among flexible and intrinsically disordered regions of proteins.
    Journal of Molecular Biology 03/2012; 417(3):253-61. DOI:10.1016/j.jmb.2012.01.042 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular dynamics (MD) simulation is an established method for studying the conformational changes that are important for protein function. Recent advances in hardware and software have allowed MD simulations over the same timescales as experiment, improving the agreement between theory and experiment to a large extent. However, running such simulations are costly, in terms of resources, storage, and trajectory analysis. There is still a place for techniques that involve short MD simulations. In order to overcome the sampling paucity of short time-scales, hybrid methods that include some form of MD simulation can exploit certain features of the system of interest, often combining experimental information in surprising ways. Here, we review some recent hybrid approaches to the simulation of proteins.
    Current Opinion in Structural Biology 05/2012; 22(3):386-93. DOI:10.1016/j.sbi.2012.05.005 · 8.75 Impact Factor