Article

Transition-state variation in human, bovine, and Plasmodium falciparum adenosine deaminases

Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, United States
Journal of the American Chemical Society (Impact Factor: 11.44). 07/2007; 129(25):8008-17. DOI: 10.1021/ja072122y
Source: PubMed

ABSTRACT Adenosine deaminases (ADAs) from human, bovine, and Plasmodium falciparum sources were analyzed by kinetic isotope effects (KIEs) and shown to have distinct but related transition states. Human adenosine deaminase (HsADA) is present in most mammalian cells and is involved in B- and T-cell development. The ADA from Plasmodium falciparum (PfADA) is essential in this purine auxotroph, and its inhibition is expected to have therapeutic effects for malaria. Therefore, ADA is of continuing interest for inhibitor design. Stable structural mimics of ADA transition states are powerful inhibitors. Here we report the transition-state structures of PfADA, HsADA, and bovine ADA (BtADA) solved using competitive kinetic isotope effects (KIE) and density functional calculations. Adenines labeled at [6-13C], [6-15N], [6-13C, 6-15N], and [1-15N] were synthesized and enzymatically coupled with [1'-14C] ribose to give isotopically labeled adenosines as ADA substrates for KIE analysis. [6-13C], [6-15N], and [1-15N]adenosines reported intrinsic KIE values of (1.010, 1.011, 1.009), (1.005, 1.005, 1.002), and (1.004, 1.001, 0.995) for PfADA, HsADA, and BtADA, respectively. The differences in intrinsic KIEs reflect structural alterations in the transition states. The [1-15N] KIEs and computational modeling results indicate that PfADA, HsADA, and BtADA adopt early SNAr transition states, where N1 protonation is partial and the bond order to the attacking hydroxyl nucleophile is nearly complete. The key structural variation among PfADA, HsADA, and BtADA transition states lies in the degree of N1 protonation with the decreased bond lengths of 1.92, 1.55, and 1.28 A, respectively. Thus, PfADA has the earliest and BtADA has the most developed transition state. This conclusion is consistent with the 20-36-fold increase of kcat in comparing PfADA with HsADA and BtADA.

0 Bookmarks
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is the most serious tropical disease of humankind and a cause of much debilitation and morbidity throughout the world especially in endemic areas like India and Africa. The development of drug resistance may be due to insufficient drug concentration in presence of high parasite load. In addition, the present pharmaceutical dosage forms are ineffective thereby necessitating the development of novel dosage forms which are effective, safe and affordable to underprivileged population of the developing world. The rapid advancement of nanotechnology has raised the possibility of using lipid nanocarriers that interact within biological environment for treatment of infectious diseases. Thus, lipid based nano-delivery systems offer a platform to formulate old and toxic antimalarial drugs thereby modifying their pharmacokinetic profile, biodistribution and targetability. Further, there is a need to develop new chemotherapy based approaches for inhibiting the parasite-specific metabolic pathways. The present review highlights the advances in lipid nanocarriers and putative molecular targets for antimalarial chemotherapy.
    Current drug targets 03/2014; 15(3):292-312. DOI:10.2174/13894501113146660235 · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report here the use of polylysine (PLL) as a carrier to bring multiple polymerization reaction initiators to surface-affixed PNA/DNA duplexes for signal amplification in polymerization-based DNA detection. Two primary benefits of the described approach have been demonstrated in this report: (1) positively charged PLL as the initiator carrier binds to PNA/DNA duplexes electrostatically; thus eliminates the need for chemical modification of each individual DNA probes prior to detection and provides a universal DNA detection scheme. (2) Furthermore, each PLL molecule brings multiple polymerization reaction initiators to each hybridization event, which leads to significantly improved detection sensitivity. Systematic investigation shows the use of longer PLL (∼215 lysine residues per chain) has yielded thicker polymer films in comparison to that of a shorter PLL (∼27 lysine residues per chain). An optimal percentage of lysine moieties modified on each PLL molecule has been determined that allowed maximum polymer growth from each modified lysine group without compromising vital electrostatic binding between unmodified amino groups and negatively charged DNA. Quantitative DNA detection has been demonstrated where the detection limit has been improved for approximately 60 times compared to the previously reported value in single-initiator-tagged DNA detection.
    Sensors and Actuators B Chemical 10/2010; 150(2):594-600. DOI:10.1016/j.snb.2010.08.034 · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interest in adenosine deaminase (ADA) in the context of medicine has mainly focused on its enzymatic activity. This is justified by the importance of the reaction catalyzed by ADA not only for the intracellular purine metabolism, but also for the extracellular purine metabolism as well, because of its capacity as a regulator of the concentration of extracellular adenosine that is able to activate adenosine receptors (ARs). In recent years, other important roles have been described for ADA. One of these, with special relevance in immunology, is the capacity of ADA to act as a costimulator, promoting T-cell proliferation and differentiation mainly by interacting with the differentiation cluster CD26. Another role is the ability of ADA to act as an allosteric modulator of ARs. These receptors have very general physiological implications, particularly in the neurological system where they play an important role. Thus, ADA, being a single chain protein, performs more than one function, consistent with the definition of a moonlighting protein. Although ADA has never been associated with moonlighting proteins, here we consider ADA as an example of this family of multifunctional proteins. In this review, we discuss the different roles of ADA and their pathological implications. We propose a mechanism by which some of their moonlighting functions can be coordinated. We also suggest that drugs modulating ADA properties may act as modulators of the moonlighting functions of ADA, giving them additional potential medical interest.
    Medicinal Research Reviews 06/2014; 35(1). DOI:10.1002/med.21324 · 8.13 Impact Factor

Full-text (2 Sources)

Download
38 Downloads
Available from
Jun 3, 2014