Article

Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway

Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 06/2007; 27(22):5885-94. DOI: 10.1523/JNEUROSCI.4548-06.2007
Source: PubMed

ABSTRACT Protein synthesis is required for persistent forms of synaptic plasticity, including long-term potentiation (LTP). A key regulator of LTP-related protein synthesis is mammalian target of rapamycin (mTOR), which is thought to modulate translational capacity by facilitating the synthesis of particular components of the protein synthesis machinery. Recently, extracellularly regulated kinase (ERK) also was shown to mediate plasticity-related translation, an effect that may involve regulation of the mTOR pathway. We studied the interaction between the mTOR and ERK pathways in hippocampal LTP induced at CA3-CA1 synapses by high-frequency synaptic stimulation (HFS). Within minutes after HFS, the expression of multiple translational proteins, the synthesis of which is under the control of mTOR, increased in area CA1 stratum radiatum. This upregulation was detected in pyramidal cell dendrites and was blocked by inhibitors of the ERK pathway. In addition, ERK mediated the stimulation of mTOR by HFS. The possibility that ERK regulates mTOR by acting at a component further upstream in the phosphatidylinositide 3-kinase (PI3K)-mTOR pathway was tested by probing the phosphorylation of p90-S6 kinase, phosphoinositide-dependent kinase 1 (PDK1), and Akt. ERK inhibitors blocked HFS-induced phosphorylation of all three proteins at sites implicated in the regulation of mTOR. Moreover, a component of basal and HFS-induced ERK activity depended on PI3K, indicating that mTOR-mediated protein synthesis in LTP requires coincident and mutually dependent activity in the PI3K and ERK pathways. The role of ERK in regulating PDK1 and Akt, with their extensive effects on cellular function, has important implications for the coordinated response of the neuron to LTP-inducing stimulation.

0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells encountering hostile growth conditions, like those residing in the middle of a newly developing solid tumor, conserve resources and energy by downregulating protein synthesis. One mechanism in this response is the translational repression of multiple mRNAs that encode components of the translational apparatus. This coordinated translational control is carried through a common cis-regulatory element, the 5' Terminal OligoPyrimidine motif (5’TOP), after which these mRNAs are referred to as TOP mRNAs. Subsequent to the initial structural and functional characterization of members of this family, the research of TOP mRNAs has progressed in three major directions: a) delineating the landscape of the family; b) establishing the pathways that transduce stress cues into selective translational repression; and c) attempting to decipher the most proximal trans-acting factor(s) and defining its mode of action – a repressor or activator. The present chapter critically reviews the development in these three avenues of research with a special emphasis on the two “top secrets” of the TOP mRNA family: the scope of its members and the identity of the proximal cellular regulator(s). This article is part of a Special Issue entitled: Translation and Cancer.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 01/2014; · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus.
    Neurobiology of Learning and Memory 01/2015; 119. DOI:10.1016/j.nlm.2014.12.014 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells encountering hostile growth conditions, like those residing in the middle of a newly developing solid tumor, conserve resources and energy by downregulating protein synthesis. One mechanism in this response is the translational repression of multiple mRNAs that encode components of the translational apparatus. This coordinated translational control is carried through a common cis-regulatory element, the 5' Terminal OligoPyrimidine motif (5'TOP), after which these mRNAs are referred to as TOP mRNAs. Subsequent to the initial structural and functional characterization of members of this family, the research of TOP mRNAs has progressed in three major directions: a) delineating the landscape of the family; b) establishing the pathways that transduce stress cues into selective translational repression; and c) attempting to decipher the most proximal trans-acting factor(s) and defining its mode of action - a repressor or activator. The present chapter critically reviews the development in these three avenues of research with a special emphasis on the two "top secrets" of the TOP mRNA family: the scope of its members and the identity of the proximal cellular regulator(s). This article is part of a Special Issue entitled: Translation and Cancer.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 09/2014; DOI:10.1016/j.bbagrm.2014.08.015 · 5.44 Impact Factor

Similar Publications