Article

Genetic diversity in laboratory colonies of western corn rootworm (Coleoptera: Chrysomelidae), including a nondiapause colony.

USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA.
Environmental Entomology (Impact Factor: 1.31). 07/2007; 36(3):637-45.
Source: PubMed

ABSTRACT Laboratory-reared western corn rootworms, Diabrotica virgifera virgifera, from colonies maintained at the North Central Agricultural Research Laboratory (NCARL) in Brookings, SD, are used extensively by many researchers in studies of the biology, ecology, behavior, and genetics of this major insect pest. A nondiapause colony developed through artificial selection in the early 1970s is particularly attractive for many studies because its generation time is much shorter than that of typical diapause colonies. However, the nondiapause colony has been in culture for approximately 190 generations without out-crossing. We compared variation at six microsatellite loci among individuals from the NCARL nondiapause colony (approximately 190 generations), main diapause colony (approximately 22 generations), four regional diapause colonies (3-8 generations), and four wild populations. Genetic diversity was very similar among the diapause laboratory colonies and wild populations. However, the nondiapause colony showed approximately 15-39% loss of diversity depending on the measure. Pairwise estimates of F(ST) were very low, revealing little genetic differentiation among laboratory colonies and natural populations. The nondiapause colony showed the greatest genetic differentiation with an average pairwise F(ST) of 0.153. There was little evidence that the laboratory colonies had undergone genetic bottlenecks except for the nondiapause colony. The nondiapause colony has suffered a moderate loss in genetic diversity and is somewhat differentiated from wild populations. This was not unexpected given its history of artificial selection for the nondiapause trait, and the large number of generations in culture. In contrast, the results indicate that the diapause colonies maintained at NCARL are genetically similar to wild populations.

1 Bookmark
 · 
186 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The western corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was controlled by applications of cyclodiene insecticides from the late 1940s until resistance evolved ∼10 years later. Range expansion from the western plains into eastern USA coincides with resistance development. An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. We found that the non-synonymous single nucleotide polymorphism (SNP) G/T at the GABA receptor cDNA position 838 (G/T(838) ) of D. v. virgifera resulted in the alanine to serine change, and the codominant SNP allele T(838) was genetically linked to survival of beetles in aldrin bioassays. A phenotypic gradient of decreasing susceptibility from west to east was correlated with higher frequencies of the resistance-conferring T(838) allele in the eastern-most populations. This pattern exists in opposition to perceived selective pressures since the more eastern and most resistant populations probably experienced reduced exposure. The reasons for the observed distribution are uncertain, but historical records of the range expansion combined with the distribution of susceptible and resistant phenotypes and genotypes provide an opportunity to better understand factors affecting the species' range expansion.
    Insect Molecular Biology 07/2013; · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The North American and European maize pest Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) was used to assess whether conditions of the natal field, subsequent laboratory rearing, or genetic population origin affect phenotypic traits of fitness, activity, or morphometrics. Standardized laboratory bioassays with large sample sizes revealed that none of the 16 tested traits, except crawling behaviours, appeared consistently stable across all seven tested colonies. Environmental conditions in the natal field of the F 0 generation affected trait averages of the subsequently reared F 1 generation in laboratory in ca. 47% of cases, and trait variability in 67% of cases. This was apparent for fitness and morphometrics, but less obvious for activity traits. Early generation laboratory rearing affected trait averages in ca. 56% of cases: morphometrics changed; fecundity and egg survival increased from F 1 to F 2. Trait variability increased or decreased in 38% of cases. Laboratory rearing for over more than 190 generations affected the trait averages in 60% of cases, reflected by decreases in flight activity and increases in body size, weight, and fecundity to some extent. It had little effect on trait variability, especially so for morphometric variability. The genetic population origin affected average levels of 55% and variability of 63% of phenotypic traits. A comparison among D. v. virgifera studies might be difficult if they use different populations or laboratory colonies. It is advised to consider possible effects of original field conditions, laboratory rearing, and population genetics when planning comparative studies targeting fitness, activity, or morphometric questions regarding Diabrotica species.
    Bulletin of entomological research 11/2013; · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Western corn rootworm (WCR) is one of the most significant insect pests of maize in North America. WCR has dramatically increased its range in the last century, invading key maize production areas in the US and abroad. In addition, this species has a history of evolving traits that allow it to escape various control options. Improved genetic and genomic resources are crucial tools for understanding population history and the genetic basis of trait evolution. Here we produce and analyze a transcriptome assembly for WCR. We also perform whole genome population resequencing, and combine these resources to better understand the evolutionary history of WCR. The WCR transcriptome assembly presented here contains approximately 16,000 unigenes, many of which have high similarity to other insect species. Among these unigenes we found several gene families that have been implicated in insecticide resistance in other species. We also identified over 500,000 unigene based SNPs among 26 WCR populations. We used these SNPs to scan for outliers among the candidate genes, and to understand how population processes have shaped genetic variation in this species. This study highlights the utility of transcriptomic and genomic resources as foundational tools for dealing with highly adaptive pest species. Using these tools we identified candidate gene families for insecticide resistance and reveal aspects of WCR population history in light of the species' recent range expansion.
    BMC Genomics 03/2014; 15(1):195. · 4.40 Impact Factor

Full-text (2 Sources)

View
27 Downloads
Available from
May 20, 2014