Article

Comparison of surface and hydrogel-based protein microchips.

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia.
Analytical Biochemistry (Impact Factor: 2.58). 10/2007; 368(2):205-13. DOI:10.1016/j.ab.2007.04.040
Source: PubMed

ABSTRACT Protein microchips are designed for high-throughput evaluation of the concentrations and activities of various proteins. The rapid advance in microchip technology and a wide variety of existing techniques pose the problem of unified approach to the assessment and comparison of different platforms. Here we compare the characteristics of protein microchips developed for quantitative immunoassay with those of antibodies immobilized on glass surfaces and in hemispherical gel pads. Spotting concentrations of antibodies used for manufacturing of microchips of both types and concentrations of antigen in analyte solution were identical. We compared the efficiency of antibody immobilization, the intensity of fluorescence signals for both direct and sandwich-type immunoassays, and the reaction-diffusion kinetics of the formation of antibody-antigen complexes for surface and gel-based microchips. Our results demonstrate higher capacity and sensitivity for the hydrogel-based protein microchips, while fluorescence saturation kinetics for the two types of microarrays was comparable.

0 0
 · 
0 Bookmarks
 · 
108 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Proteolytic digestion is an essential step in proteomic sample processing. While this step has traditionally been implemented in homogeneous (solution) format, there is a growing trend to use heterogeneous systems in which the enzyme is immobilized on hydrogels or other solid supports. Here, we introduce the use of immobilized enzymes in hydrogels for proteomic sample processing in digital microfluidic (DMF) systems. In this technique, preformed cylindrical agarose discs bearing immobilized trypsin or pepsin were integrated into DMF devices. A fluorogenic assay was used to optimize the covalent modification procedure for enzymatic digestion efficiency, with maximum efficiency observed at 31 μg trypsin in 2-mm diameter agarose gel discs. Gel discs prepared in this manner were used in an integrated method in which proteomic samples were sequentially reduced, alkylated, and digested, with all sample and reagent handling controlled by DMF droplet operation. Mass spectrometry analysis of the products revealed that digestion using the trypsin gel discs resulted in higher sequence coverage in model analytes relative to conventional homogenous processing. Proof-of-principle was demonstrated for a parallel digestion system in which a single sample was simultaneously digested on multiple gel discs bearing different enzymes. We propose that these methods represent a useful new tool for the growing trend toward miniaturization and automation in proteomic sample processing.
    Proteomics 05/2012; 12(9):1310-8. · 4.43 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Advances in lab-on-a-chip systems have strong potential for multiplexed detection of a wide range of analytes with reduced sample and reagent volume; lower costs and shorter analysis times. The completion of high-fidelity multiplexed and multiclass assays remains a challenge for the medical microdevice field; as it struggles to achieve and expand upon at the point-of-care the quality of results that are achieved now routinely in remote laboratory settings. This review article serves to explore for the first time the key intersection of multiplexed bead-based detection systems with integrated microfluidic structures alongside porous capture elements together with biomarker validation studies. These strategically important elements are evaluated here in the context of platform generation as suitable for near-patient testing. Essential issues related to the scalability of these modular sensor ensembles are explored as are attempts to move such multiplexed and multiclass platforms into large-scale clinical trials. Recent efforts in these bead sensors have shown advantages over planar microarrays in terms of their capacity to generate multiplexed test results with shorter analysis times. Through high surface-to-volume ratios and encoding capabilities; porous bead-based ensembles; when combined with microfluidic elements; allow for high-throughput testing for enzymatic assays; general chemistries; protein; antibody and oligonucleotide applications.
    Sensors 01/2012; 12(11):15467-99. · 1.95 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The term hydrogel describes a type of soft and wet material formed by cross-linked hydrophilic polymers. The distinct feature of hydrogels is their ability to absorb a large amount of water and swell. The properties of a hydrogel are usually determined by the chemical properties of their constituent polymer(s). However, a group of hydrogels, called "smart hydrogels," changes properties in response to environmental changes or external stimuli. Recently, DNA or DNA-inspired responsive hydrogels have attracted considerable attention in construction of smart hydrogels because of the intrinsic advantages of DNA. As a biological polymer, DNA is hydrophilic, biocompatible, and highly programmable by Watson-Crick base pairing. DNA can form a hydrogel by itself under certain conditions, and it can also be incorporated into synthetic polymers to form DNA-hybrid hydrogels. Functional DNAs, such as aptamers and DNAzymes, provide additional molecular recognition capabilities and versatility. In this Review, DNA-based hydrogels are discussed in terms of their stimulus response, as well as their applications.
    Macromolecular Rapid Communications 07/2013; · 4.93 Impact Factor

Full-text (3 Sources)

View
65 Downloads
Available from
Feb 15, 2013