Article

Comparison of surface and hydrogel-based protein microchips.

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia.
Analytical Biochemistry (Impact Factor: 2.58). 10/2007; 368(2):205-13. DOI: 10.1016/j.ab.2007.04.040
Source: PubMed

ABSTRACT Protein microchips are designed for high-throughput evaluation of the concentrations and activities of various proteins. The rapid advance in microchip technology and a wide variety of existing techniques pose the problem of unified approach to the assessment and comparison of different platforms. Here we compare the characteristics of protein microchips developed for quantitative immunoassay with those of antibodies immobilized on glass surfaces and in hemispherical gel pads. Spotting concentrations of antibodies used for manufacturing of microchips of both types and concentrations of antigen in analyte solution were identical. We compared the efficiency of antibody immobilization, the intensity of fluorescence signals for both direct and sandwich-type immunoassays, and the reaction-diffusion kinetics of the formation of antibody-antigen complexes for surface and gel-based microchips. Our results demonstrate higher capacity and sensitivity for the hydrogel-based protein microchips, while fluorescence saturation kinetics for the two types of microarrays was comparable.

0 Bookmarks
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The term hydrogel describes a type of soft and wet material formed by cross-linked hydrophilic polymers. The distinct feature of hydrogels is their ability to absorb a large amount of water and swell. The properties of a hydrogel are usually determined by the chemical properties of their constituent polymer(s). However, a group of hydrogels, called "smart hydrogels," changes properties in response to environmental changes or external stimuli. Recently, DNA or DNA-inspired responsive hydrogels have attracted considerable attention in construction of smart hydrogels because of the intrinsic advantages of DNA. As a biological polymer, DNA is hydrophilic, biocompatible, and highly programmable by Watson-Crick base pairing. DNA can form a hydrogel by itself under certain conditions, and it can also be incorporated into synthetic polymers to form DNA-hybrid hydrogels. Functional DNAs, such as aptamers and DNAzymes, provide additional molecular recognition capabilities and versatility. In this Review, DNA-based hydrogels are discussed in terms of their stimulus response, as well as their applications.
    Macromolecular Rapid Communications 07/2013; · 4.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microfluidic devices are excellent at downscaling chemical and biochemical reactions and thereby can make reactions faster, better and more efficient. It is therefore understandable that we are seeing these devices being developed and used for many applications and research areas. However, microfluidic devices are more complex than test tubes or microtitre plates and the integration of reagents into them is a real challenge. This review looks at state-of-the-art methods and strategies for integrating various classes of reagents inside microfluidics and similarly surveys how reagents can be released inside microfluidics. The number of methods used for integrating and releasing reagents is surprisingly large and involves reagents in dry and liquid forms, directly-integrated reagents or reagents linked to carriers, as well as active, passive and hybrid release methods. We also made a brief excursion into the field of drug release and delivery. With this review, we hope to provide a large number of examples of integrating and releasing reagents that can be used by developers and users of microfluidics for their specific needs.
    Chemical Society Reviews 08/2013; · 24.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review (containing 101 refs.) covers recent achievements in the development of new approaches for enzy-matically assisted detection of nucleic acids on microarrays. We discuss molecular techniques including the polymerase chain reaction, reverse transcription, allele specific primer extension and a range of isothermal techniques for the amplification and discrimination of nucleic acids. This also includes their imple-mentation into microfluidic systems. These techniques all show great promise for use in the life sciences by allowing for high throughput, cost effective and highly sensitive and specific analysis of nucleic acids. Importantly, they can be potentially integrated into personalized and point-of-care medicine.
    Microchimica Acta 01/2014; · 3.43 Impact Factor

Full-text (3 Sources)

View
90 Downloads
Available from
May 22, 2014