Article

Identification of proteolytic cleavage sites by quantitative proteomics

Department of Biochemistry, Purdue University, ウェストラファイエット, Indiana, United States
Journal of Proteome Research (Impact Factor: 5). 08/2007; 6(7):2850-8. DOI: 10.1021/pr0701052
Source: PubMed

ABSTRACT The identification of natural substrates and their cleavage sites is pivotal to defining proteolytic pathways. Here we report a novel strategy for the identification of the signature of proteolytic cleavage events based on quantitative proteomics. Lysine residues in proteins are blocked by guanidination so that free N-terminals can be labeled with amine-specific iTRAQ reagents. The quantitative nature of iTRAQ reagents allows us to distinguish N-terminals newly formed by proteolytic treatment (neoepitopes) from original N-terminals in proteins. Proteins are digested with trypsin and analyzed using MALDI-TOF/TOF mass spectrometry. Peptides labeled with iTRAQ reagents are distinguished from other peptides by exhibiting intense signature ions in tandem mass spectrometry analysis. A corresponding data acquisition strategy was developed to specifically analyze iTRAQ tagged N-terminal peptides. To validate the procedure, we examined a set of recombinant Escherichia coli proteins that have predicted caspase-3 cleavage motifs. The protein mixture was treated with active or inactive caspase-3 and subsequently labeled with two different iTRAQ reagents. Mass spectrometric analysis located 10 cleavage sites, all corresponding to caspase-3 consensus. Spiking caspase-cleaved substrate into a human cell lysate demonstrated the high sensitivity of the procedure. Moreover, we were able to identify proteolytic cleavage products associated with the induction of cell-free apoptosis. Together, these data reveal a novel application for iTRAQ technology for the detection of proteolytic substrates.

0 Followers
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomic analysis is helpful in identifying cancerassociated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine metastatic process in lung cancer, we performed a proteomics study by label-free quantitative analysis and Nterminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials-NCI-H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.
    Moleculer Cells 05/2014; DOI:10.14348/molcells.2014.0035 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oncogenic Ras induces cell transformation and promotes an invasive phenotype. The tumor suppressor p53 has a suppressive role in Ras-driven invasion. However, its mechanism remains poorly understood. Here we show that p53 induces activation of the mitochondrial protease high-temperature requirement A2 (HtrA2; also known as Omi) and prevents Ras-driven invasion by modulating the actin cytoskeleton. Oncogenic Ras increases accumulation of p53 in the cytoplasm, which promotes the translocation of p38 mitogen-activated protein kinase (MAPK) into mitochondria and induces phosphorylation of HtrA2/Omi. Concurrently, oncogenic Ras also induces mitochondrial fragmentation, irrespective of p53 expression, causing the release of HtrA2/Omi from mitochondria into the cytosol. Phosphorylated HtrA2/Omi therefore cleaves β-actin and decreases the amount of filamentous actin (F-actin) in the cytosol. This ultimately down-regulates p130 Crk-associated substrate (p130Cas)-mediated lamellipodia formation, countering the invasive phenotype initiated by oncogenic Ras. Our novel findings provide insights into the mechanism by which p53 prevents the malignant progression of transformed cells.
    The Journal of Cell Biology 03/2014; DOI:10.1083/jcb.201309107 · 9.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As proteases sculpt the proteome in both homeostatic and pathogenic processes, unraveling their primary signaling pathways and key substrates is of utmost importance. Hence, with the development of procedures enriching for proteolysis-indicative peptides and the availability of more sensitive mass spectrometers, protease degradomics technologies are ideally suited to gain insight in a protease's substrate repertoire and substrate specificity profile. Especially knowledge on discriminating sequence features among closely related homologs and orthologs may aid identifying key targets and developing protease-specific inhibitors. Although clever labeling strategies allow comparing substrate repertoires and critical protease-substrate recognition motifs of several proteases in a single analysis, comprehensive views of (differences in) substrate subsite occupancies of entire protease families is lacking. Therefore, we here describe a hierarchical cluster analysis of the by positional proteomics determined cleavage sites of a family of serine proteases; the granzymes. We and others previously assigned clear murine orthologs for all 5 human granzymes. As such, hierarchical clustering of the sequences surrounding granzyme cleavage sites reveals detailed insight into granzyme-specific differences in substrate selection and thereby deorphanizes the substrate specificity profiles and repertoires of the human and murine orthologous granzymes A, B, H/C, M and K.
    Journal of Proteome Research 02/2014; 13(4). DOI:10.1021/pr401104b · 5.00 Impact Factor