Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review.

Centre for Reviews and Dissemination, University of York, York YO10 5DD.
BMJ (online) (Impact Factor: 17.22). 07/2007; 334(7606):1257. DOI: 10.1136/bmj.39217.473275.55
Source: PubMed

ABSTRACT To determine the diagnostic accuracy of duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography, alone or in combination, for the assessment of lower limb peripheral arterial disease; to evaluate the impact of these assessment methods on management of patients and outcomes; and to evaluate the evidence regarding attitudes of patients to these technologies and summarise available data on adverse events.
Systematic review.
Searches of 11 electronic databases (to April 2005), six journals, and reference lists of included papers for relevant studies. Two reviewers independently selected studies, extracted data, and assessed quality. Diagnostic accuracy studies were assessed for quality with the QUADAS checklist.
107 studies met the inclusion criteria; 58 studies provided data on diagnostic accuracy, one on outcomes in patients, four on attitudes of patients, and 44 on adverse events. Quality assessment highlighted limitations in the methods and quality of reporting. Most of the included studies reported results by arterial segment, rather than by limb or by patient, which does not account for the clustering of segments within patients, so specificities may be overstated. For the detection of stenosis of 50% or more in a lower limb vessel, contrast enhanced magnetic resonance angiography had the highest diagnostic accuracy with a median sensitivity of 95% (range 92-99.5%) and median specificity of 97% (64-99%). The results were 91% (89-99%) and 91% (83-97%) for computed tomography angiography and 88% (80-98%) and 96% (89-99%) for duplex ultrasonography. A controlled trial reported no significant differences in outcomes in patients after treatment plans based on duplex ultrasonography alone or conventional contrast angiography alone, though in 22% of patients supplementary contrast angiography was needed to form a treatment plan. The limited evidence available suggested that patients preferred magnetic resonance angiography (with or without contrast) to contrast angiography, with half expressing no preference between magnetic resonance angiography or duplex ultrasonography (among patients with no contraindications for magnetic resonance angiography, such as claustrophobia). Where data on adverse events were available, magnetic resonance angiography was associated with the highest proportion of adverse events, but these were mild. The most severe adverse events, although rare, were mainly associated with contrast angiography.
Contrast enhanced magnetic resonance angiography seems to be more specific than computed tomography angiography (that is, better at ruling out stenosis over 50%) and more sensitive than duplex ultrasonography (that is, better at ruling in stenosis over 50%) and was generally preferred by patients over contrast angiography. Computed tomography angiography was also preferred by patients over contrast angiography; no data on patients' preference between duplex ultrasonography and contrast angiography were available. Where available, contrast enhanced magnetic resonance angiography might be a viable alternative to contrast angiography.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To prospectively compare the image quality and diagnostic performance achieved with doses of gadobenate dimeglumine and gadopentetate dimeglumine of 0.1 mmol per kilogram of body weight in patients undergoing contrast material-enhanced magnetic resonance (MR) angiography of the pelvis, thigh, and lower-leg (excluding foot) for suspected or known peripheral arterial occlusive disease. Institutional review board approval was granted from each center and informed written consent was obtained from all patients. Between November 2006 and January 2008, 96 patients (62 men, 34 women; mean age, 63.7 years +/- 10.4 [standard deviation]; range, 39-86 years) underwent two identical examinations at 1.5 T by using three-dimensional spoiled gradient-echo sequences and randomized 0.1-mmol/kg doses of each agent. Images were evaluated on-site for technical adequacy and quality of vessel visualization and offsite by three independent blinded readers for anatomic delineation and detection/exclusion of pathologic features. Comparative diagnostic performance was determined in 31 patients who underwent digital subtraction angiography. Data were analyzed by using the Wilcoxon signed-rank, McNemar, and Wald tests. Interreader agreement was determined by using generalized kappa statistics. Differences in quantitative contrast enhancement were assessed and a safety evaluation was performed. Ninety-two patients received both agents. Significantly better performance (P < .0001; all evaluations) with gadobenate dimeglumine was noted on-site for technical adequacy and vessel visualization quality and offsite for anatomic delineation and detection/exclusion of pathologic features. Contrast enhancement (P < or = .0001) and detection of clinically relevant disease (P < or = .0028) were significantly improved with gadobenate dimeglumine. Interreader agreement for stenosis detection and grading was good to excellent (kappa = 0.749 and 0.805, respectively). Mild adverse events were reported for four (six events) and five (eight events) patients after gadobenate dimeglumine and gadopentetate dimeglumine, respectively. Higher-quality vessel visualization, greater contrast enhancement, fewer technical failures, and improved diagnostic performance are obtained with gadobenate dimeglumine, relative to gadopentetate dimeglumine, when compared intraindividually at 0.1-mmol/kg doses in patients undergoing contrast-enhanced MR angiography for suspected peripheral arterial occlusive disease.
    Radiology 06/2010; 255(3):988-1000. · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contrast-enhanced magnetic resonance angiography is a reliable way to assess peripheral vascular disease. This article reviews the basic physics behind this technique and discusses our institution's experience with regard to the clinical role, recent advances in image acquisition and use of contrast agents. Problems that can affect image quality and interpretation are also highlighted.
    Journal of Medical Imaging and Radiation Oncology 04/2013; 57(2):125-40. · 0.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is a global epidemic affecting individuals of all socioeconomic backgrounds. Despite intensive efforts, morbidity and mortality secondary to the micro- and macrovascular complications remain unacceptably high. As a result, the use of imaging modalities to determine the underlying pathophysiology, early onset of complications, and disease progression has become an integral component of the management of such individuals. Echocardiography, stress echocardiography, and nuclear imaging have been the mainstay of noninvasive cardiovascular imaging tools to detect myocardial ischemia, but newer modalities such as cardiac MRI, cardiac CT, and PET imaging provide incremental information not available with standard imaging. While vascular imaging to detect cerebrovascular and peripheral arterial disease non-invasively has traditionally used ultrasound, CT- and MRI-based techniques are increasingly being employed. In this review, we will provide an outline of recent studies utilizing non-invasive imaging techniques to assist in disease diagnosis as well as monitoring disease progression. In addition, we will review the evidence for newer modalities such as MR spectroscopy, 3D intravascular ultrasound, and optical coherence tomography that provide exquisite detail of metabolic function and coronary anatomy not available with standard imaging, but that have not yet become mainstream.
    Current Atherosclerosis Reports 04/2014; 16(4):399. · 2.92 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014