Article

Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: a role for glutathione depletion.

Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA.
International Journal of Oncology (Impact Factor: 2.77). 08/2007; 31(1):161-8. DOI: 10.3892/ijo.31.1.161
Source: PubMed

ABSTRACT Adjuvant therapies that enhance the anti-tumor effects of cis-diammineplatinum(II) dichloride (cisplatin, CDDP) are actively being pursued. Growing evidence supports the involvement of mitochondrial dysfunction in the anti-cancer effect of cisplatin. We examined the potential of using selective flavonoids that are effective in depleting tumor cells of glutathione (GSH) to potentiate cisplatin-mediated cytotoxicity in human lung adenocarcinoma (A549) cells. We found that cisplatin (40 microM, 48-h treatment) disrupts the steady-state levels of mitochondrial respiratory complex I, which correlates with elevated mitochondrial reactive oxygen species (ROS) production and cytochrome c release. The flavonoids, 2',5'-dihydroxychalcone (2',5'-DHC, 20 microM) and chrysin (20 microM) potentiated the cytotoxicity of cisplatin (20 microM), which could be blocked by supplementation of the media with exogenous GSH (500 microM). Both 2',5'-DHC and chrysin were more effective than the specific inhibitor of GSH synthesis, L-buthionine sulfoximine (BSO, 20 microM), in inducing GSH depletion and potentiating the cytotoxic effect of cisplatin. These data suggest that the flavonoid-induced potentiation of cisplatin's toxicity is due, in part, to synergetic pro-oxidant effects of cisplatin by inducing mitochondrial dysfunction, and the flavonoids by depleting cellular GSH, an important antioxidant defense.

0 Bookmarks
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In our previous study, we identified an association of high expression of c3orf1, also known as TIMMDC1 (translocase of inner mitochondrial membrane domain-containing protein 1), with metastatic characteristics in lung carcinoma cells. To investigate the preliminary function and mechanism of this mitochondrial protein, we depleted C3orf1 expression by introducing siRNA into 95D lung carcinoma cells. We demonstrated that C3orf1 depletion significantly suppressed 95D cell growth and migration. We confirmed C3orf1 localization in the inner mitochondrial membrane and showed that mitochondrial viability, membrane potential, and ATPase activity were remarkably reduced upon depletion of C3orf1. Microarray data indicated that genes involved in regulation of cell death, migration, and cell-cycle arrest were significantly altered after C3orf1 depletion for 48 h. The expression of genes involved in focal adhesion, ECM-receptor interaction, and p53-signaling pathways were notably altered. Furthermore, cell-cycle arrest genes such as CCNG2 and PTEN as well as genes involved in cell migration inhibition, such as TIMP3 and COL3A1, were upregulated after C3orf1 depletion in 95D cells. Concurrently, expression of the migration-promoting gene NUPR1 was markedly reduced, as confirmed by real-time PCR. We conclude that C3orf1 is critical for mitochondrial function, migration, and proliferation in 95D lung carcinoma cells. Depletion of C3orf1 inhibited cell migration and cell proliferation in association with upregulation of genes involved in cell-cycle arrest and cell migration inhibition. These results suggest that C3orf1 (TIMMDC1) may be a viable treatment target for lung carcinoma, and that further study of the role of this protein in lung carcinoma pathogenesis is justified.
    International Journal of Molecular Sciences 11/2014; 15(11):20555-71. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods. Chinese medicines (including Chinese medicinal herbs, animal parts, and minerals) were used in the study. The key words including "cancer", "cell death", "apoptosis", "autophagy," "necrosis," and "Chinese medicine" were used in retrieval of related information from PubMed and other databases. Results. The cell death induced by Chinese medicines is described as apoptotic, autophagic, or necrotic cell death and other types with an emphasis on their mechanisms of anticancer action. The relationship among different types of cell death induced by Chinese medicines is critically reviewed and discussed. Conclusions. This review summarizes that CMs treatment could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical researches to clinic application will be a key issue in the future.
    BioMed Research International 01/2014; 2014:530342. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chrysin, a naturally occurring flavone, abundantly found in numerous plant extracts including propolis and in honey is one of the most widely used herbal medicine in Asian countries. Nowadays, chrysin has become the foremost candidate exhibiting health benefits, owing to its multiple bioactivities such as antioxidant, anti-inflammatory, anti-allergic, anti-diabetic, anti-estrogenic, antibacterial and antitumor activities. Anticancer activity is most promising among the multiple pharmacological effects displayed by chrysin. In vitro and in vivo models have shown that chrysin inhibits cancer growth through induction of apoptosis, alteration of cell cycle and inhibition of angiogenesis, invasion and metastasis without causing any toxicity and undesirable side effects to normal cells. Chrysin displays these effects through selective modulation of multiple cell signaling pathways which are linked to inflammation, survival, growth, angiogenesis, invasion and metastasis of cancer cells. This broad spectrum of antitumor activity in conjunction with low toxicity underscores the translational value of chrysin in cancer therapy. The present review highlights the chemopreventive and therapeutic effects, molecular targets and antineoplastic mechanisms that contribute to the observed anticancer activity of chrysin.
    Toxicology Letters 01/2015; 233(2). · 3.36 Impact Factor

Full-text

Download
47 Downloads
Available from
May 22, 2014