Article

Subcortical Connections of Area V4 in the Macaque

Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1366, USA.
Cerebral Cortex (Impact Factor: 8.31). 04/2008; 18(3):477-99. DOI: 10.1093/cercor/bhm061
Source: PubMed

ABSTRACT To determine the locus, full extent, and topographic organization of cortical connections of area V4 (visual area 4), we injected anterograde and retrograde tracers under electrophysiological guidance into 21 sites in 9 macaques. Injection sites included representations ranging from central to far peripheral eccentricities in the upper and lower fields. Our results indicated that all parts of V4 are connected with occipital areas V2 (visual area 2), V3 (visual area 3), and V3A (visual complex V3, part A), superior temporal areas V4t (V4 transition zone), MT (medial temporal area), and FST (fundus of the superior temporal sulcus [STS] area), inferior temporal areas TEO (cytoarchitectonic area TEO in posterior inferior temporal cortex) and TE (cytoarchitectonic area TE in anterior temporal cortex), and the frontal eye field (FEF). By contrast, mainly peripheral field representations of V4 are connected with occipitoparietal areas DP (dorsal prelunate area), VIP (ventral intraparietal area), LIP (lateral intraparietal area), PIP (posterior intraparietal area), parieto-occipital area, and MST (medial STS area), and parahippocampal area TF (cytoarchitectonic area TF on the parahippocampal gyrus). Based on the distribution of labeled cells and terminals, projections from V4 to V2 and V3 are feedback, those to V3A, V4t, MT, DP, VIP, PIP, and FEF are the intermediate type, and those to FST, MST, LIP, TEO, TE, and TF are feedforward. Peripheral field projections from V4 to parietal areas could provide a direct route for rapid activation of circuits serving spatial vision and spatial attention. By contrast, the predominance of central field projections from V4 to inferior temporal areas is consistent with the need for detailed form analysis for object vision.

Full-text

Available from: Ricardo Gattass, May 30, 2015
0 Followers
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Imagine you are looking out over a scenic landscape. The image you perceive is actually made up of many different visual components—for example color and movement—that are processed across many different areas in a region of the brain called the visual cortex. An important question for neuroscience is how the visual system combines information from so many different areas to create a coherent picture of the world around us. Many areas of the visual cortex have their own map of what we see (the visual field). These maps allow the brain to maintain its representation of the visual field as the information passes from one processing area to the next. Areas that process corresponding parts of the visual field are physically interconnected, and tend to be active at the same time, which suggests that they are working together in some way. In addition, areas of the visual cortex that process different sections of the visual field can be activated at the same time, but it is not clear how this works. Here, Arcaro et al. used a technique called functional magnetic resonance imaging (fMRI) to image the brains of people as they watched movies and while they rested. The images showed that seemingly unrelated areas of the visual cortex respond in similar ways if they are processing sections of the visual field that are the same distance from the center of the person's gaze. For example, if you look directly at the center of a computer screen parts of the brain that process the top of the screen are active at the same time as parts that process the bottom. Arcaro et al.'s findings suggest that the brain uses the distance from the center of our gaze to bring together information from different areas of the visual cortex. This offers a new insight into how the brain assembles the many pieces of the visual jigsaw to make a complete picture. Future work will investigate how the architecture of the visual cortex is able to support this coupling of different areas, and how it might influence our perception of the visual world. DOI: http://dx.doi.org/10.7554/eLife.03952.002
    eLife Sciences 02/2015; 4. DOI:10.7554/eLife.03952 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously-with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain.
    Philosophical Transactions of The Royal Society B Biological Sciences 05/2015; 370(1668). DOI:10.1098/rstb.2014.0174 · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Cerebral Cortex 03/2015; DOI:10.1093/cercor/bhv064 · 8.31 Impact Factor