TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses.

Institut National de la Santé et de la Recherche Médicale Unité 851, IFR128 Biosciences Lyon-Gerland, 21 Avenue Tony Garnier, Lyon, France.
The Journal of Immunology (Impact Factor: 5.36). 07/2007; 178(12):7779-86. DOI: 10.4049/jimmunol.178.12.7779
Source: PubMed

ABSTRACT Naive murine B cells are known to proliferate and differentiate in response to LPS or CpG, which bind to TLR4 and TLR9, respectively. However, the naive murine B cell compartment is heterogeneous and comprises four different B cell subsets: B-1a, B-1b, marginal zone (MZ), and follicular (FO) B cells. B-1a, B-1b, and MZ B cells are specialized in the response to thymus-independent Ag, and FO B cells are involved in the response to thymus-dependent Ag. This study was undertaken to compare those four naive B cell subsets for their responses to TLR agonists. Quantitative RT-PCR analysis revealed that expression of TLR transcripts differs quantitatively but not qualitatively from one subset to the other. All TLR agonists, with the exception of flagellin and poly(I:C), stimulate B cell proliferation whatever the subset considered. However, TLR ligation leads to massive differentiation of B-1 and MZ B cells into mature plasma cells (PC) but only marginally promotes PC differentiation of FO B cells. Moreover, TLR stimulation strongly up-regulates expression of Blimp-1 and XBP-1(S), two transcription factors known to be instrumental in PC differentiation, in B-1 and MZ B cells but not in FO B cells. Altogether, our findings suggest that B-1 and MZ B cells are poised to PC differentiation in response to the microbial environment and that TLR agonists can be instrumental in stimulating Ab-mediated innate immune protection during microbial infections.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B-1 cells constitute a unique subset of B cells identified in several species including mice and humans. B-1 cells are further subdivided into B-1a and B-1b subsets as the former but not the later express CD5. The B-1a subset contributes to innate type of immune responses while the B-1b B cell subset contributes to adaptive responses. B-1 cell responses to B cell receptor (BCR) as well as Toll-like receptor (TLR) ligation are tightly regulated due to the cross-reactivity of antigen specific receptors on B-1 cells to self-antigens. B-1 cells are elevated in several autoimmune diseases. CD5 plays a major role in down regulation of BCR responses in the B-1a cell subset. Reduced amplification of BCR induced signals via CD19 and autoregulation of BCR and TLR responses by B-1 cell produced IL-10 appear to have a role in regulation of both B-1a and B-1b B cell responses. Siglec G receptors and Lyn kinase also regulate B-1 cell responses but their differential role in the two B-1 cell subsets is unknown.
    Frontiers in Immunology 12/2012; 3:372. DOI:10.3389/fimmu.2012.00372
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipopolysaccharide (LPS) is a bacterial endotoxin and a potent B-cell activator capable of inducing a humoral immune response. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-established immunotoxicant that can suppress humoral immune responses, including those initiated by LPS stimulation. In murine models, TCDD-induced suppression of the LPS-activated primary immunoglobulin M (IgM) response is observed both in vivo and in vitro and is typically evaluated as a decrease in the number of IgM antibody-forming cells. The TCDD-induced suppression of the primary humoral immune response occurs, at least in part, upstream of IgM production. The current study was designed as an initial test of our hypothesis that altered DNA methylation, an epigenetic event, is involved in the LPS-induced IgM response by splenocytes as is the suppression of this response by TCDD. Splenocyte-derived DNA from mice treated in vivo with sesame oil + PBS, LPS, TCDD, or LPS + TCDD was used for the current investigation. DNA methylation was evaluated using a technique that permits assessment of the methylation status of multiple genomic regions simultaneously in an unbiased fashion (no specific genes or genomic regions are preselected). Additionally, the expression of selected genes was determined. Our results indicate that treatment with LPS or TCDD can alter DNA methylation and, importantly, combined TCDD + LPS results in altered DNA methylation that was not simply the addition of the changes discerned in the individual treatment groups. Thus, we have identified cross talk between LPS and TCDD at the level of DNA methylation and gene expression.
    Toxicological Sciences 03/2011; 120(2):339-48. DOI:10.1093/toxsci/kfq396 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B lymphocytes are well known because of their key role in mediating humoral immune responses. Upon encounter with antigen and on cognate interaction with T cells, they differentiate into antibody-secreting plasma cells, which are critical for protection against a variety of pathogens. In addition to their antibody-production function, B cells are efficient antigen-presenting cells and express a variety of pathogen recognition receptors (PRRs). Engagement of these PRRs with their respective ligands results in cytokine and chemokine secretion and the upregulation of co-stimulatory molecules. These events constitute innate immune responses. Toll-like receptor (TLR) activation provides a third signal for B cell activation and is essential for optimal antigen-specific antibody responses. In some situations, TLR activation in B cells can result in autoimmunity. The purpose of this review is to provide some insights into the way that TLRs influence innate and adaptive B cell responses.
    Cell and Tissue Research 01/2011; 343(1):131-40. DOI:10.1007/s00441-010-1031-3 · 3.33 Impact Factor


Available from

Similar Publications