Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: A role for the cytosolic AAA ATPase p97?

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States
Biochemistry (Impact Factor: 3.19). 08/2007; 46(26):7793-803. DOI: 10.1021/bi700340n
Source: PubMed

ABSTRACT Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored hemoproteins engaged in the metabolism of numerous xeno- and endobiotics. P450s exhibit widely ranging half-lives, utilizing both autophagic-lysosomal (ALD) and ubiquitin-dependent 26S proteasomal (UPD) degradation pathways. Although suicidally inactivated hepatic CYPs 3A and "native" CYP3A4 in Saccharomyces cerevisiae are degraded via UPD, the turnover of native hepatic CYPs 3A in their physiological milieu has not been elucidated. Herein, we characterize the degradation of native, dexamethasone-inducible CYPs 3A in cultured primary rat hepatocytes, using proteasomal (MG-132 and MG-262) and ALD [NH4Cl and 3-methyladenine (3-MA)] inhibitors to examine their specific degradation route. Pulse-chase with immunoprecipitation analyses revealed a basal 52% 35S-CYP3A loss over 6 h, which was stabilized by both proteasomal inhibitors. By contrast, no corresponding CYP3A stabilization was detected with either ALD inhibitor NH4Cl or 3-MA. Furthermore, MG-262-induced CYP3A stabilization was associated with its polyubiquitylation, thereby verifying that native CYPs 3A were also degraded via UPD. To identify the specific participants in this process, cellular proteins were cross-linked in situ with paraformaldehyde (PFA) in cultured hepatocytes. Immunoblotting analyses of CYP3A immunoprecipitates after PFA-cross-linking revealed the presence of p97, a cytosolic AAA ATPase instrumental in the extraction and delivery of ubiquitylated ER proteins for proteasomal degradation. Such native CYP3A-p97 interactions were greatly magnified after CYP3A suicidal inactivation (which accelerates UPD), and/or proteasomal inhibition, and were confirmed by proteomic and confocal immunofluorescence microscopic analyses. These findings clearly reveal that native CYPs 3A undergo UPD and implicate a role for p97 in this process.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatic endoplasmic reticulum (ER) integral cytochromes P450 (P450s) are monooxygenases engaged in the biotransformation and elimination of endo- as well as xenobiotics. Of the human liver P450s, CYP3A4 is the major and most dominant catalyst responsible for the biotransformation of over 50% of clinically prescribed drugs. CYP2E1 metabolizes smaller molecular weight compounds (EtOH), carcinogens, environmental toxins, and endobiotics, and is justly implicated in various toxigenic/pathogenic mechanisms of human disease. Both P450s are notorious for their potential to generate pathogenic reactive oxygen species (ROS) during futile oxidative cycling and/or oxidative uncoupling. Such ROS not only oxidatively damage the P450 catalytic cage, but on their escape into the cytosol, also the P450 outer surface and any surrounding cell organelles. Given their ER-monotopic topology coupled with this high potential to acquire oxidative lesions in their cytosolic (C) domain, not surprisingly these P450 proteins exhibit shorter lifespans and are excellent prototype substrates of ER-associated degradation ("ERAD-C") pathway. Indeed, we have shown that both CYP3A4 and CYP2E1 incur ERAD-C, during which they are first phosphorylated by protein kinases A and C, which greatly enhance/accelerate their ubiquitination by UBC7/gp78 and UbcH5a/CHIP/Hsp70/Hsp40 E2/E3 ubiquitin ligase complexes. Such P450 phosphorylation occurs on Ser/Thr residues within linear sequences as well as spatially clustered acidic (Asp/Glu) residues. We propose that such S/T phosphorylation within these clusters creates negatively charged patches or conformational phosphodegrons for interaction with positively charged E2/E3 domains. Such P450 S/T phosphorylation we posit serves as a molecular switch to turn on its ubiquitination and ERAD-C. © 2014 IUBMB Life, 2014.
    International Union of Biochemistry and Molecular Biology Life 02/2014; 66(2). DOI:10.1002/iub.1247 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chalepensin, a furanocoumarin, is present in several medicinal Rutaceae plants and causes a mechanism-based inhibition of human and mouse cytochrome P450 (P450, CYP) 2A in vitro. To address the in vivo effect, we investigated the effects of chalepensin on multiple hepatic P450 enzymes in C57BL/6JNarl mice. Oral administration of 10 mg/kg chalepensin to mice for 7 days significantly decreased hepatic coumarin 7-hydroxylation (Cyp2a) and increased 7-pentoxyresorufin O-dealkylation (Cyp2b) activities, whereas activities of Cyp1a, Cyp2c, Cyp2e1, and Cyp3a were not affected. Without affecting its mRNA level, the decreased Cyp2a activity was accompanied by an increase in the immunodetected Cyp2a5 protein level. In chalepensin-treated mice, microsomal Cyp2a5 was less susceptible to ATP-fortified cytosolic degradation than that in control mice, resulting in the elevated protein level. The in vitro inactivation through NADPH-fortified pre-incubation with chalepensin also protected microsomal Cyp2a5 against protein degradation. Using cell-based reporter systems, chalepensin at a concentration near unbound plasma concentration activated mouse constitutive androstane receptor (CAR), in agreement with the observed induction of Cyp2b. These findings revealed that suicidal inhibition of Cyp2a5 and the CAR-mediated Cyp2b9/10 induction concurrently occurred in chalepensin-treated mice.
    Archives of Toxicology 07/2012; DOI:10.1007/s00204-012-0902-7 · 5.08 Impact Factor
  • Annual reports in medicinal chemistry 01/2009; 44:535-553. DOI:10.1016/S0065-7743(09)04426-1 · 1.19 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014