The Birt-Hogg-Dube and Tuberous Sclerosis Complex Homologs Have Opposing Roles in Amino Acid Homeostasis in Schizosaccharomyces pombe

Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 09/2007; 282(34):24583-90. DOI: 10.1074/jbc.M700857200
Source: PubMed


Birt-Hogg-Dube (BHD) is a tumor suppressor gene disorder characterized by skin hamartomas, cystic lung disease, and renal cell carcinoma. The fact that hamartomas, lung cysts, and renal cell carcinoma can also occur in tuberous sclerosis complex (TSC) suggests that the BHD and TSC proteins may function within a common pathway. To evaluate this hypothesis, we deleted the BHD homolog in Schizosaccharomyces pombe. Expression profiling revealed that six permease and transporter genes, known to be down-regulated in Deltatsc1 and Deltatsc2, were up-regulated in Deltabhd, and levels of specific intracellular amino acids known to be low in Deltatsc1 and Deltatsc2 were elevated in Deltabhd. This "opposite" profile was unexpected, given the overlapping clinical phenotypes. The TSC1/2 proteins inhibit Rheb in mammals, and Tsc1/Tsc2 inhibit Rhb1 in S. pombe. Expression of a hypomorphic allele of rhb1(+) dramatically increased permease expression levels in Deltabhd but not in wild-type yeast. Loss of Bhd sensitized yeast to rapamycin-induced increases in permease expression levels, and rapamycin induced lethality in Deltabhd yeast expressing the hypomorphic Rhb1 allele. In S. pombe, it is known that Rhb1 binds Tor2, and Tor2 inhibition leads to up-regulation of permeases including those that are regulated by Bhd. Our data, therefore, suggest that Bhd activates Tor2. If the mammalian BHD protein, folliculin, similarly activates mammalian target of rapamycin, it will be of great interest to determine how mammalian target of rapamycin inhibition in BHD patients and mammalian target of rapamycin activation in TSC patients lead to overlapping clinical phenotypes.

17 Reads
  • Source
    • "Thus, we theorized that BHD syndrome belongs to a larger family of disorders characterized by mTOR deregulation, such as tuberous sclerosis complex (TSC) [14], [19]. In yeast, the homologue of FLCN is found to have opposing roles to the genes involved in TSC (TSC1 and TSC2), but all are suggested to regulate common downstream targets [20]. In TSC, as in BHD, patients develop facial hair follicle tumours, called angiofibromas. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Birt-Hogg-Dubé syndrome (BHD) is a rare autosomal dominant disorder characterised by the occurrence of benign, mostly facial, skin tumours called fibrofolliculomas, multiple lung cysts, spontaneous pneumothorax and an increased renal cancer risk. Current treatments for fibrofolliculomas have high rates of recurrence and carry a risk of complications. It would be desirable to have a treatment that could prevent fibrofolliculomas from growing. Animal models of BHD have previously shown deregulation of mammalian target of rapamycin (mTOR). Topical use of the mTOR inhibitor rapamycin is an effective treatment for the skin tumours (angiofibromas) in tuberous sclerosis complex, which is also characterised by mTOR deregulation. In this study we aimed to determine if topical rapamycin is also an effective treatment for fibrofolliculomas in BHD.
    PLoS ONE 06/2014; 9(6):e99071. DOI:10.1371/journal.pone.0099071 · 3.23 Impact Factor
  • Source
    • "Alternatively, in amino acid starved cells FLCN might be poised at the lysosomal surface to activate RagC/D upon the restoration of amino acid levels, but such a scenario would require a mechanism to regulate the FLCN-FNIP GAP activity. A third question is why FLCN is a tumor suppressor and yet in most studies in cultured cells and whole organisms, including ours, it scores as a positive component of the TORC1 pathway (Baba et al., 2006; Bastola et al., 2013; Hartman et al., 2009; Hudon et al., 2010; Liu et al., 2013; Takagi et al., 2008; van Slegtenhorst et al., 2007 "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mTORC1 kinase is a master growth regulator that senses numerous environmental cues, including amino acids. The Rag GTPases interact with mTORC1 and signal amino acid sufficiency by promoting the translocation of mTORC1 to the lysosomal surface, its site of activation. The Rags are unusual GTPases in that they function as obligate heterodimers, which consist of RagA or B bound to RagC or D. While the loading of RagA/B with GTP initiates amino acid signaling to mTORC1, the role of RagC/D is unknown. Here, we show that RagC/D is a key regulator of the interaction of mTORC1 with the Rag heterodimer and that, unexpectedly, RagC/D must be GDP bound for the interaction to occur. We identify FLCN and its binding partners, FNIP1/2, as Rag-interacting proteins with GAP activity for RagC/D, but not RagA/B. Thus, we reveal a role for RagC/D in mTORC1 activation and a molecular function for the FLCN tumor suppressor.
    Molecular cell 10/2013; 52(4). DOI:10.1016/j.molcel.2013.09.016 · 14.02 Impact Factor
  • Source
    • "The functional outcome of this biochemical interaction and the mechanistic details of FLCN-FNIP-AMPK signaling remain unclear. Opposing data have been provided indicating that FLCN down-regulates [11], [16] or up-regulates [13], [21] mTORC1 function in vitro and in vivo. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Birt-Hogg-Dube disease occurs as a result of germline mutations in the human Folliculin gene (FLCN), and is characterized by clinical features including fibrofolliculomas, lung cysts and multifocal renal neoplasia. Clinical and genetic evidence suggest that FLCN acts as a tumor suppressor gene. The human cell line UOK257, derived from the renal cell carcinoma of a patient with a germline mutation in the FLCN gene, harbors a truncated version of the FLCN protein. Reconstitution of the wild type FLCN protein into UOK257 cells delays cell cycle progression, due to a slower progression through the late S and G2/M-phases. Similarly, Flcn (-/-) mouse embryonic fibroblasts progress more rapidly through the cell cycle than wild type controls (Flcn (flox/flox)). The reintroduction of tumor-associated FLCN mutants (FLCN ΔF157, FLCN 1-469 or FLCN K508R) fails to delay cell cycle progression in UOK257 cells. Additionally, FLCN phosphorylation (on Serines 62 and 73) fluctuates throughout the cell cycle and peaks during the G2/M phase in cells treated with nocodazole. In keeping with this observation, the reintroduction of a FLCN phosphomimetic mutant into the UOK257 cell line results in faster progression through the cell cycle compared to those expressing the wild type FLCN protein. These findings suggest that the tumor suppression function of FLCN may be linked to its impact on the cell cycle and that FLCN phosphorylation is important for this activity. Additionally, these observations describe a novel in vitro assay for testing the functional significance of FLCN mutations and/or genetic polymorphisms.
    PLoS ONE 07/2013; 8(7):e66775. DOI:10.1371/journal.pone.0066775 · 3.23 Impact Factor
Show more