The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells

Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany.
Cell Death and Differentiation (Impact Factor: 8.18). 10/2007; 14(9):1678-87. DOI: 10.1038/sj.cdd.4402175
Source: PubMed


Fas ligand (FasL) is a type II transmembrane protein belonging to the tumor necrosis factor family. Its binding to the cognate Fas receptor triggers the apoptosis that plays a pivotal role in the maintenance of immune system homeostasis. The cell death-inducing property of FasL has been associated with its extracellular domain, which can be cleaved off by metalloprotease activity to produce soluble FasL. The fate of the remaining membrane-anchored N-terminal part of the FasL molecule has not been determined. Here we show that post-translational processing of overexpressed and endogenous FasL in T-cells by the disintegrin and metalloprotease ADAM10 generates a 17-kDa N-terminal fragment, which lacks the receptor-binding extracellular domain. This FasL remnant is membrane anchored and further processed by SPPL2a, a member of the signal peptide peptidase-like family of intramembrane-cleaving proteases. SPPL2a cleavage liberates a smaller and highly unstable fragment mainly containing the intracellular FasL domain (FasL ICD). We show that this fragment translocates to the nucleus and is capable of inhibiting gene transcription. With ADAM10 and SPPL2a we have identified two proteases implicated in FasL processing and release of the FasL ICD, which has been shown to be important for retrograde FasL signaling.


Available from: Francisca Guardiola Serrano, May 01, 2014
  • Source
    • "The intramembrane protease Signal-peptide-peptidase-like 2a (SPPL2a) resides in lysosomes and late endosomes [1] and has been implicated in the processing of type 2 transmembrane proteins [2] including TNFa [3] [4], the Fas ligand [5], the Bri2 protein [6] and the invariant chain (CD74) of the MHCII complex [7]. Among these, only the latter has been confirmed in vivo. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The invariant chain (CD74) mediates targeting of the MHCII complex to endosomal compartments, where CD74 undergoes degradation allowing MHCII to acquire peptides. We demonstrated recently that intramembrane proteolysis of the final membrane-bound N-terminal fragment (NTF) of CD74 is catalysed by Signal-peptide-peptidase-like 2a (SPPL2a) and that this process is indispensable for development and function of B lymphocytes in mice. In SPPL2a-/- mice, homeostasis of these cells is disturbed by the accumulation of the unprocessed CD74 NTF. So far, evidence for this essential role of SPPL2a is restricted to mice. Nevertheless, inhibition of SPPL2a has been suggested as novel approach to target B cells for treating autoimmunity. Here, we characterize human B cell lines with a homozygous microdeletion on chromosome 15. We demonstrate that this deletion disrupts the SPPL2a genomic locus and leads to loss of SPPL2a transcript. Lymphoblastoid cell lines from patients with this deletion exhibit absence of SPPL2a at the protein level and show an accumulation of the CD74 NTF comparable to B cells from SPPL2a-/- mice. By this means, we present evidence that the role of SPPL2a in CD74 proteolysis is conserved in human B cells and provide support for modulation of SPPL2a activity as a therapeutic concept.
    Biochemical and Biophysical Research Communications 08/2014; 451(1). DOI:10.1016/j.bbrc.2014.07.051 · 2.30 Impact Factor
  • Source
    • "We next wanted to address whether this reduction in surface expression would correlate to a reduced shedding of a known ADAM10 substrate. Since we and others had identified FasL as a substrate for ADAM10 in T cells [13,14], we analyzed the presence of surface (membrane) mFasL and soluble sFasL under these conditions (Figure 3). Again, we noted the mild decrease in surface ADAM10 (Figure 3A). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A disintegrin and metalloproteases (ADAMs) have been implicated in many processes controlling organismic development and integrity. Important substrates of ADAM proteases include growth factors, cytokines and their receptors and adhesion proteins. The inducible but irreversible cleavage of their substrates alters cell-cell communication and signaling. The crucial role of ADAM proteases (e.g. ADAM10 and 17) for mammalian development became evident from respective knockout mice, that displayed pre- or perinatal lethality with severe defects in many organs and tissues. Although many substrates for these two ADAM proteases were identified over the last decade, the regulation of their surface appearance, their enzymatic activity and their substrate specificity are still not well understood. We therefore analyzed the constitutive and inducible surface expression of ADAM10 and ADAM17 on a variety of human T cell and tumor cell lines. We demonstrate that ADAM10 is constitutively present at comparably high levels on the majority of the tested cell types. Stimulation with phorbol ester and calcium ionophore does not significantly alter the amount of surface ADAM10, except for a slight down-regulation from T cell blasts. Using FasL shedding as a readout for ADAM10 activity, we show that PKC activation and calcium mobilization are both prerequisite for activation of ADAM10 resulting in a production of soluble FasL. In contrast to ADAM10, the close relative ADAM17 is detected at only low levels on unstimulated cells. ADAM17 surface expression on T cell blasts is rapidly induced by stimulation. Since this inducible mobilization of ADAM17 is sensitive to inhibitors of actin filament formation, we propose that ADAM17 but not ADAM10 is prestored in a subcellular compartment that is transported to the cell surface in an activation- and actin-dependent manner.
    PLoS ONE 10/2013; 8(10):e76853. DOI:10.1371/journal.pone.0076853 · 3.23 Impact Factor
  • Source
    • "It is also well documented that membrane-bound TNF or FasL are shed by cleavage with metalloproteases (TACE, ADAM10), leaving behind on the expressing cell the transmembrane segment and intracellular domain of the ligands. The transmembrane domain is thereafter processed by signal peptide peptidase-like aspartyl proteases that release in the producing cell the intracellular domains of TNF or FasL that can migrate and signal in the nucleus [36], [37], [38], [39]. The mechanism by which atacicept promoted CNS inflammation in patients with relapsing-remitting multiple sclerosis remains unknown. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor) and/or BCMA (B Cell Maturation Antigen). BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called "reverse signalling". In order to understand how TACI-Fc (atacicept) technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study), they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells.
    PLoS ONE 04/2013; 8(4):e61350. DOI:10.1371/journal.pone.0061350 · 3.23 Impact Factor
Show more