Article

The perfect mix: recent progress in adjuvant research.

Research Department, sanofi pasteur, Campus Merieux, 69280 Marcy l'Etoile, France.
Nature Reviews Microbiology (Impact Factor: 22.49). 08/2007; 5(7):505-17. DOI: 10.1038/nrmicro1681
Source: PubMed

ABSTRACT Developing efficient and safe adjuvants for use in human vaccines remains both a challenge and a necessity. Past approaches have been largely empirical and generally used a single type of adjuvant, such as aluminium salts or emulsions. However, new vaccine targets often require the induction of well-defined cell-mediated responses in addition to antibodies, and thus new immunostimulants are required. Recent advances in basic immunology have elucidated how early innate immune signals can shape subsequent adaptive responses and this, coupled with improvements in biochemical techniques, has led to the design and development of more specific and focused adjuvants. In this Review, I discuss the research that has made it possible for vaccinologists to now be able to choose between a large panel of adjuvants, which potentially can act synergistically, and combine them in formulations that are specifically adapted to each target and to the relevant correlate(s) of protection.

0 Bookmarks
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the increase in production and use of engineered nanoparticles (NP; <= 100 nm), safety concerns have risen about the potential health effects of occupational or environmental NP exposure. Results of animal toxicology studies suggest that inhalation of NP may cause pulmonary injury with subsequent acute or chronic inflammation. People with chronic respiratory diseases like asthma or allergic rhinitis may be even more susceptible to toxic effects of inhaled NP. Few studies, however, have investigated adverse effects of inhaled NP that may enhance the development of allergic airway disease. We investigated the potential of polyethylene glycol coated amorphous silica NP (SNP; 90 nm diameter) to promote allergic airway disease when co-exposed during sensitization with an allergen. BALB/c mice were sensitized by intranasal instillation with 0.02% ovalbumin (OVA; allergen) or saline (control), and co-exposed to 0, 10, 100, or 400 mug of SNP. OVA-sensitized mice were then challenged intranasally with 0.5% OVA 14 and 15 days after sensitization, and all animals were sacrificed a day after the last OVA challenge. Blood and bronchoalveolar lavage fluid (BALF) were collected, and pulmonary tissue was processed for histopathology and biochemical and molecular analyses. Co-exposure to SNP during OVA sensitization caused a dose-dependent enhancement of allergic airway disease upon challenge with OVA alone. This adjuvant-like effect was manifested by significantly greater OVA-specific serum IgE, airway eosinophil infiltration, mucous cell metaplasia, and Th2 and Th17 cytokine gene and protein expression, as compared to mice that were sensitized to OVA without SNP. In saline controls, SNP exposure did cause a moderate increase in airway neutrophils at the highest doses. These results suggest that airway exposure to engineered SNP could enhance allergen sensitization and foster greater manifestation of allergic airway disease upon secondary allergen exposures. Whereas SNP caused innate immune responses at high doses in non-allergic mice, the adjuvant effects of SNP were found at lower doses in allergic mice and were Th2/Th17 related. In conclusion, these findings in mice suggest that individuals exposed to SNP might be more prone to manifest allergic airway disease, due to adjuvant-like properties of SNP.
    Particle and Fibre Toxicology 07/2013; 10(1):26. · 9.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Covalent conjugation of immune-stimulatory compounds to protein antigens is a potential means to self-adjuvant non-replicating subunit vaccines. Previously, it was demonstrated that covalent coupling of a Toll-like receptor (TLR) ligand to the exterior HIV-1 envelope glycoprotein, gp120, enhanced its immunogenicity. However, the consequences of chemical conjugation to gp120 on broadly neutralizing antibody (bNAb) epitopes were so far not examined. Here, we conjugated a TLR7/8 ligand to lysine residues on gp120 using NHS-PEO8-maleimide linkers and investigated if this affected Ab recognition of the CD4 binding site (CD4bs), a highly conserved target for bNAbs. We demonstrate that the recognition of the CD4bs was reduced following coupling, especially at a higher coupling ratio. These results have implications for the coupling of ligands to vaccine antigens where elicitation of humoral immune responses to specific neutralizing determinants is desired.
    Virology 11/2013; 446(1-2):56-65. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, a low molecular weight polysaccharide, ABP-AW1, isolated from Agaricus blazei Murill was assessed for its potential adjuvant activity. ABP-AW1 is considered to create a 'depot' of antigen at a subcutaneous injection site. ICR mice were immunized with 100 μg ovalbumin (OVA) alone or with 100 μg OVA formulated in 0.9% saline containing 200 μg aluminum (alum) or ABP-AW1 (50, 100 and 200 μg) on days 1 and 15. Two weeks after the secondary immunization, splenocyte proliferation, the expression of surface markers, cytokine production and the OVA-specific antibody levels in the serum were determined. The OVA/ABP-AW1 vaccine, in comparison with OVA alone, markedly increased the proliferation of splenic lymphocytes and elicited greater antigen-specific CD4(+) T cell activation, as determined by splenic CD4(+)CD69(+) T cells and Th1 cytokine interferon (IFN)-γ release. The combination of ABP-AW1 and OVA also enhanced IgG2b antibody responses to OVA. In conclusion, these data indicated that ABP-AW1 significantly enhanced the humoral and cellular immune responses against OVA in the mice, suggesting that ABP-AW1 stimulated Th1-type immunity. We suggest that ABP-AW1 may serve as a new adjuvant.
    Oncology letters 10/2013; 6(4):1039-1044. · 0.24 Impact Factor

Full-text (2 Sources)

View
16 Downloads
Available from
Jul 30, 2014

Similar Publications