Article

Anchor-lipid monolayers at the air-water interface; prearranging of model membrane systems

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Langmuir (Impact Factor: 4.38). 08/2007; 23(14):7672-8. DOI: 10.1021/la7002854
Source: PubMed

ABSTRACT Model membrane systems are gaining more and more interest both for basic studies of membrane-related processes as well as for biotechnological applications. Several different model systems have been reported among which the tethered bilayer lipid membranes (tBLMs) form a very attractive and powerful architecture. In all the proposed architectures, a control of the lateral organization of the structures at a molecular level is of great importance for an optimized preparation. For tBLMs, a homogeneous and not too dense monolayer is required to allow for the functional incorporation of complex membrane proteins. We present here an alternative approach to the commonly used self-assembly preparation. Lipids are spread on the air-water interface of a Langmuir film balance and form a monomolecular film. This allows for a better control of the lateral pressure and distribution for subsequent transfer to solid substrates. In this paper, we describe the properties of the surface monolayer, in terms of surface pressure, structure of the lipid molecule, content of lipid mixtures, temperature, and relaxations features. It is shown that a complete mixing of anchor-lipids and free lipids can be achieved. Furthermore, an increase of the spacer lengths and a decrease of the temperature lead to more compact films. This approach is a first step toward the fully controlled assembly of a model membrane system.

0 Followers
 · 
90 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tethered bilayer lipid membranes can be used as model platforms to host membrane proteins or membrane-active peptides, which can act as transducers in sensing applications. Here we present the synthesis and characterization of a valinomycin derivative, a depsipeptide that has been functionalized to serve as a redox probe in a lipid bilayer. In addition, we discuss the influence of the molecular structure of the lipid bilayer on its ability to host proteins. By using electrical impedance techniques as well as neutron scattering experiments, a clear correlation between the packing density of the lipids forming the membrane and its ability to host membrane proteins could be shown.
    Australian Journal of Chemistry 01/2011; 64(1). DOI:10.1071/CH10347 · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Solid supported membrane systems have been established as biomimetic architectures, which allow for the systematic investigation of various membrane-related processes. Especially tethered bilayer lipid membranes have been a successful concept. They consist of a lipid bilayer that is covalently anchored to a solid substrate through a spacer group. The submembrane part, which is defined by the spacer group, is important especially for the biological activity of incorporated membrane proteins. Anchor lipids with different spacer and anchor groups have been synthesized, and the resulting membrane structures have been investigated by neutron reflectivity. The different molecular architectures had a significant effect on both the amount of water incorporated in the spacer region and the electrical properties of the bilayer. A detailed understanding of the structure-function relationship allows for an optimized design of the molecular architecture with respect to possible applications, for example an optimized protein incorporation.
    Langmuir 07/2010; 26(13):11035-40. DOI:10.1021/la100342k · 4.38 Impact Factor