Stratification of Breast Cancer Risk in Women With Atypia: A Mayo Cohort Study

University of California, San Francisco, San Francisco, California, United States
Journal of Clinical Oncology (Impact Factor: 18.43). 07/2007; 25(19):2671-7. DOI: 10.1200/JCO.2006.09.0217
Source: PubMed

ABSTRACT Atypical hyperplasia is a well-recognized risk factor for breast cancer, conveying an approximately four-fold increased risk. Data regarding long-term absolute risk and factors for risk stratification are needed.
Women with atypical hyperplasia in the Mayo Benign Breast Disease Cohort were identified through pathology review. Subsequent breast cancers were identified via medical records and a questionnaire. Relative risks (RRs) were estimated using standardized incidence ratios, comparing the observed number of breast cancers with those expected based on Iowa Surveillance, Epidemiology, and End Results (SEER) data. Age, histologic factors, and family history were evaluated as risk modifiers. Plots of cumulative breast cancer incidence provided estimates of risk over time.
With mean follow-up of 13.7 years, 66 breast cancers (19.9%) occurred among 331 women with atypia. RR of breast cancer with atypia was 3.88 (95% CI, 3.00 to 4.94). Marked elevations in risk were seen with multifocal atypia (eg, three or more foci with calcifications [RR, 10.35; 95% CI, 6.13 to 16.4]). RR was higher for younger women (< 45; RR, 6.76; 95% CI, 3.24 to 12.4). Risk was similar for atypical ductal and atypical lobular hyperplasia, and family history added no significant risk. Breast cancer risk remained elevated over 20 years, and the cumulative incidence approached 35% at 30 years.
Among women with atypical hyperplasia, multiple foci of atypia and the presence of histologic calcifications may indicate "very high risk" status (> 50% risk at 20 years). A positive family history does not further increase risk in women with atypia.

1 Follower
15 Reads
  • Source
    • "However, predicting which patients with neoplasia will progress to invasive cancer remains difficult. Pre-invasive lesions diagnosed as ADH and DCIS are associated with progression to invasive cancer in only a fraction of patients: 20% of ADH will be associated with IDC [5] and 50% of DCIS will progress to IDC [6]. This clinical heterogeneity makes treatment of patients with early neoplasia problematic and motivates research aimed at uncovering the molecular mechanisms at play in these earliest stages of cancer development. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The earliest recognizable stages of breast neoplasia are lesions that represent a heterogeneous collection of epithelial proliferations currently classified based on morphology. Their role in the development of breast cancer is not well understood but insight into the critical events at this early stage will improve efforts in breast cancer detection and prevention. These microscopic lesions are technically difficult to study so very little is known about their molecular alterations. Results To characterize the transcriptional changes of early breast neoplasia, we sequenced 3′- end enriched RNAseq libraries from formalin-fixed paraffin-embedded tissue of early neoplasia samples and matched normal breast and carcinoma samples from 25 patients. We find that gene expression patterns within early neoplasias are distinct from both normal and breast cancer patterns and identify a pattern of pro-oncogenic changes, including elevated transcription of ERBB2, FOXA1, and GATA3 at this early stage. We validate these findings on a second independent gene expression profile data set generated by whole transcriptome sequencing. Measurements of protein expression by immunohistochemistry on an independent set of early neoplasias confirms that ER pathway regulators FOXA1 and GATA3, as well as ER itself, are consistently upregulated at this early stage. The early neoplasia samples also demonstrate coordinated changes in long non-coding RNA expression and microenvironment stromal gene expression patterns. Conclusions This study is the first examination of global gene expression in early breast neoplasia, and the genes identified here represent candidate participants in the earliest molecular events in the development of breast cancer.
    Genome Biology 05/2014; 15(5):R71. DOI:10.1186/gb-2014-15-5-r71 · 10.81 Impact Factor
  • Source
    • "Models of breast cancer development have identified several histologically recognisable breast lesions as potentially precancerous. Ductal hyperplasia (DH), atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) are associated with a 1.5, 5 and 10-fold increased relative risk for future invasive ductal cancer (IDC), respectively (Dupont and Page, 1985; Page et al, 1985; Dupont et al, 1993; Page et al, 1995; Hartmann et al, 2005; Degnim et al, 2007). Although such lesions signify an increased risk for the development of invasive breast cancer, not all patients will indeed acquire invasive disease. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Molecular pathways determining the malignant potential of premalignant breast lesions remain unknown. In this study, alterations in DNA methylation levels were monitored during benign, premalignant and malignant stages of ductal breast cancer development. Methods: To study epigenetic events during breast cancer development, four genomic biomarkers (Methylated-IN-Tumour (MINT)17, MINT31, RARβ2 and RASSF1A) shown to represent DNA hypermethylation in tumours were selected. Laser capture microdissection was employed to isolate DNA from breast lesions, including normal breast epithelia (n=52), ductal hyperplasia (n=23), atypical ductal hyperplasia (n=31), ductal carcinoma in situ (DCIS, n=95) and AJCC stage I invasive ductal carcinoma (IDC, n=34). Methylation Index (MI) for each biomarker was calculated based on methylated and unmethylated copy numbers measured by Absolute Quantitative Assessment Of Methylated Alleles (AQAMA). Trends in MI by developmental stage were analysed. Results: Methylation levels increased significantly during the progressive stages of breast cancer development; P-values are 0.0012, 0.0003, 0.012, <0.0001 and <0.0001 for MINT17, MINT31, RARβ2, RASSF1A and combined biomarkers, respectively. In both DCIS and IDC, hypermethylation was associated with unfavourable characteristics. Conclusion: DNA hypermethylation of selected biomarkers occurs early in breast cancer development, and may present a predictor of malignant potential.
    British Journal of Cancer 05/2013; 108(10). DOI:10.1038/bjc.2013.136 · 4.84 Impact Factor
  • Source
    • "Tumor hypoxia can facilitate intravasation, and normalization of the vasculature can reduce metastasis (38). Anti-VEGF therapy increases tumor invasiveness and metastasis, and a recent report demonstrated that anti-VEGF therapy increased the cancer stem cell population through hypoxia pathway signaling in xenograft models (13,39,40). Additionally, clinical studies have demonstrated only limited benefits of antiangiogenic therapy for breast cancer (41). "
    [Show abstract] [Hide abstract]
    ABSTRACT: To analyze the expression of hypoxia-inducible factors (hypoxia-inducible factor 1A and hypoxia-inducible factor 2A) and aldehyde dehydrogenase proteins in patients with locally advanced breast carcinoma who were subjected to neoadjuvant chemotherapy. We included 90 patients with histologically confirmed stage II and III breast carcinoma who were treated with neoadjuvant chemotherapy between 2000 and 2005. Immunohistochemistry for aldehyde dehydrogenase, hypoxia-inducible factor 1A, and hypoxia-inducible factor 2A was performed before and after neoadjuvant chemotherapy. We analyzed the influence of clinical and pathological features on clinical and pathological response, disease-free survival, and overall survival. An objective clinical response to neoadjuvant chemotherapy was observed in 80% of patients, with 12% showing a complete pathological response. Among all clinical and pathological parameters, only the expression of hypoxia-inducible factor 1A was associated with a pathological response. A positive association was found between expression of aldehyde dehydrogenase and that of hypoxia-inducible factor 1A before and after chemotherapy. Aldehyde dehydrogenase expression was associated with expression of hypoxia inducible-factor 2A in tumors after neoadjuvant treatment. In a univariate analysis, prognosis was influenced by age, pathological response, metastasis to axillary lymph nodes after neoadjuvant chemotherapy, overexpression of hypoxia-inducible factor 2, and the presence of aldehyde dehydrogenase-positive cells within the primary tumor after neoadjuvant chemotherapy. In a multivariate analysis, only age and the presence of aldehyde dehydrogenase-positive cells after chemotherapy were associated with reduced overall survival. The presence of aldehyde dehydrogenase-positive cells within the residual tumor after neoadjuvant chemotherapy is associated with an increase in the expression of hypoxia-inducible factor 2A and with poor prognosis in patients with locally advanced breast cancer.
    Clinics (São Paulo, Brazil) 05/2013; 68(5). DOI:10.6061/clinics/2013(05)03 · 1.19 Impact Factor
Show more