Plectin-RACK1 (receptor for activated C kinase 1) scaffolding - A novel mechanism to regulate protein kinase C activity

Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria.
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2004; 279(18):18701-10. DOI: 10.1074/jbc.M312382200
Source: PubMed

ABSTRACT Agonist-induced translocation of protein kinase C (PKC) isozymes is mediated by receptors for the activated form of the kinase, shuttling it from one intracellular site to another and enhancing its catalytic activity. It is however unknown whether the receptors themselves are anchored to certain intracellular structures prior to their engagement with PKC. We show here sequestering of receptor for activated C kinase 1 (RACK1) to the cytoskeleton through the cytoskeletal linker protein plectin during the initial stages of cell adhesion. We found that upon PKC activation, RACK1 was released from the cytoskeleton and transferred to the detergent-soluble cell compartment, where it formed an inducible triple complex with one of the PKC isozymes, PKCdelta, and with plectin. In plectin-deficient cells the cytoskeleton-associated RACK1 fraction was reduced, and the protein was found predominantly at sites to which it normally translocated upon PKC activation. Concomitantly, dislocation of PKCdelta and elevated enzymatic activity were observed in these cells. PKCdelta was also more rapidly degraded, likely due to its overactivation. We propose a previously unrecognized function of plectin as cytoskeletal regulator of PKC signaling, and possibly other signaling events, through sequestration of the scaffolding protein RACK1.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell migration is a multistep process which relies on the coordination of cytoskeletal structures in space and time. While the roles of actin and microtubules have been investigated in great details, the lack of inhibitors and visualizing tools and the large number of proteins forming intermediate filaments (IFs) have delayed the characterization of IF functions during migration. However, a large body of evidence has progressively pointed to changes in IF composition as an important parameter in the regulation of cell migratory properties both during development and tumor invasion. More recent in-depth analyses show that IFs are dynamically reorganized to participate, together with microfilaments and microtubules, to the key steps leading to cell migration. Copyright © 2015. Published by Elsevier Ltd.
    Current Opinion in Cell Biology 02/2015; 32C:102-112. DOI:10.1016/ · 8.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plectin is one of the cytolinker proteins that play a crucial role in maintaining the integrity of cellular architecture. It is a component of desmosome complexes connecting cytoskeletal proteins and trans-membrane molecules. In epithelial cells, plectin connects cytokeratins and integrin α6β4 in hemidesmosomes anchoring to the extracellular matrix. In addition to the function of molecular adherent, plectin has been reported to exhibit functions affecting cellular signals and responsive activities mediated by stress, cellular migration, polarization as well as the dynamic movement of actin filaments. Plectin deficiency in hepatocellular carcinoma results in abnormal expression of cytokeratin 18 and disassembled hemidesmosome. Therefore, it is hypothesized that the plectin deficiency-mediated collapse of cytoskeleton may modulate cellular motility that is associated with consequent metastatic behaviors of cancer cells. The cellular motility of plectin-deficient Chang liver cells generated by transient knockdown were analyzed by trans-well migration assay and the results revealed a higher migration rate. The confocal microscopy also demonstrated less organized and more polarized morphology as well as more focal adhesion kinase activity in comparison with that of the mock Chang liver cells. Furthermore, plectin-knockdown in Chang liver cells was associated with a higher activity of Rac1-GTPase in accordance with the results of the Rac1 pull-down assay. The immunohistochemical assay on human hepatocellular carcinoma showed that the expression of focal adhesion kinase was increased in the invasive front of tumor. Plectin-deficient human hepatic cells exhibit higher cell motility associated with increase in focal adhesion kinase activity that are comparable to the properties of invasive hepatocellular carcinoma.
    Cancer Cell International 03/2015; 15(1):29. DOI:10.1186/s12935-015-0177-1 · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesions are localized actin filament-anchoring signalling centres at the cell–extracellular matrix interface. The currently emerging view is that they fulfil an all-embracing coordinating function for the entire cytoskeleton. This review highlights the tight relationship between focal adhesions and the intermediate filament cytoskeleton. We summarize the accumulating evidence for direct binding of intermediate filaments to focal adhesion components and their mutual cross-talk through signalling molecules. Examples are presented to emphasize the high degree of complexity of these interactions equipping cells with a precisely controlled machinery for context-dependent adjustment of their biomechanical properties.
    Current Opinion in Cell Biology 02/2015; 32. DOI:10.1016/ · 8.74 Impact Factor