Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo

Division of Diagnostic and Surgical Sciences, University of California at Los Angeles School of Dentistry, Room 53-068 CHS, 10833 Le Conte Avenue, Los Angeles, California 90095, USA.
Journal of Orthopaedic Research (Impact Factor: 2.97). 11/2007; 25(11):1488-97. DOI: 10.1002/jor.20437
Source: PubMed

ABSTRACT Oxysterols, naturally occurring cholesterol oxidation products, can induce osteoblast differentiation. Here, we investigated short-term 22(S)-hydroxycholesterol + 20(S)-hydroxycholesterol (SS) exposure on osteoblastic differentiation of marrow stromal cells. We further explored oxysterol ability to promote bone healing in vivo. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, osteocalcin (OCN) mRNA expression, mineralization, and Runx2 DNA binding activity. To explore the effects of osteogenic oxysterols in vivo, we utilized the critical-sized rat calvarial defect model. Poly(lactic-co-glycolic acid) (PLGA) scaffolds alone or coated with 140 ng (low dose) or 1400 ng (high dose) oxysterol cocktail were implanted into the defects. Rats were sacrificed at 6 weeks and examined by three-dimensional (3D) microcomputed tomography (microCT). Bone volume (BV), total volume (TV), and BV/TV ratio were measured. Culture exposure to SS for 10 min significantly increased ALP activity after 4 days, while 2 h exposure significantly increased mineralization after 14 days. Four-hour SS treatment increased OCN mRNA measured after 8 days and nuclear protein binding to an OSE2 site measured after 4 days. The calvarial defects showed slight bone healing in the control group. However, scaffolds adsorbed with low or high-dose oxysterol cocktail significantly enhanced bone formation. Histologic examination confirmed bone formation in the defect sites grafted with oxysterol-adsorbed scaffolds, compared to mostly fibrous tissue in control sites. Our results suggest that brief exposure to osteogenic oxysterols triggered events leading to osteoblastic cell differentiation and function in vitro and bone formation in vivo. These results identify oxysterols as potential agents in local and systemic enhancement of bone formation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver X receptors (LXRs) are nuclear receptors that play a crucial role in the transcriptional control of lipid metabolism. Pharmacological LXR activation is an attractive concept for the treatment of atherosclerosis. Genetic LXR deficiency in mice has been shown to have an effect on bone turnover and structure and LXR activation is known to influence the osteogenic differentiation of bone marrow stromal cells. Therefore, therapeutic pharmacological LXR activation may have relevant effects on bone. Here, using two synthetic LXR ligands, T0901317 and GW3965, we investigated the effect of LXR activation on murine osteoblasts and the influence of long-term LXR activation on bone in vivo in mice. Short term (48 h) in vitro treatment of primary murine osteoblasts with T0901317 resulted in a dose-dependent decrease of osteocalcin and alkaline phosphatase mRNA and protein. In vivo, a 6-day treatment of C57BL/6J mice with T0901317 led to a 40% reduction of serum osteocalcin concentrations. Long-term (12-week) oral administration of T0901317 or GW3965 influenced the expression of established LXR target genes in liver and intestine, but did not alter trabecular and cortical bone structure or bone turnover as determined by total skeleton radiography, histomorphometric analysis of lumbar vertebral trabecular bone, micro CT analysis of femur cortical bone and biochemical determination of bone formation and resorption markers. We conclude that short-term pharmacological LXR activation has the potential to profoundly influence osteoblast function, but that long-term LXR activation in vivo has no adverse effects on the murine skeleton.
    Bone 02/2011; 48(2):339-46. DOI:10.1016/j.bone.2010.08.018 · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the distribution of Al and OH defects in synthetic quartz grown from cylindrical seeds parallel to X, Y and Z crystallographic axes. Prismatic habit crystals were grown with m-, R-, r- and x- faces. The growth sectors were identified by radiation-induced coloration and their morphologies were characterized by X-ray topography. Optical and infrared spectroscopies were adopted to evaluate the occurrence of Al-hole, Al-OH and as-grown OH centers. It was found that the relative content of Al-hole and Al-OH centers were dependent on the growth sector and the orientation of the seed crystal. The ratio of Al-hole to Al-OH centers between +X- and -X-sectors grown from the Z-axis seed-crystal is opposite to that found in cylindrical Y-axis and standard Y-bar synthetic quartz crystals. The incorporation of Al-Li centers was responsible for the intense lattice strains observed in r-growth sectors appearing around the X-axis.
    Frequency Control Symposium and Exposition, 2004. Proceedings of the 2004 IEEE International; 09/2004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipases A(2) (PLA(2)) hydrolyze the sn-2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA(2) (iPLA(2)beta), which participates in a variety of signaling events; iPLA(2)beta mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-gamma and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA(2)beta-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA(2)beta causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA(2)beta in bone formation.
    American Journal Of Pathology 05/2008; 172(4):868-81. DOI:10.2353/ajpath.2008.070756 · 4.60 Impact Factor