Development and validation of DNA microarray for genotyping group A rotavirus VP4 (P[4], P[6], P[8], P[9], and P[14]) and VP7 (G1 to G6, G8 to G10, and G12) genes.

Epidemiology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-8026, USA.
Journal of Clinical Microbiology (Impact Factor: 4.23). 09/2007; 45(8):2641-8. DOI: 10.1128/JCM.00736-07
Source: PubMed

ABSTRACT Previously, we reported the development of a microarray-based method for the identification of five clinically relevant G genotypes (G1 to G4 and G9) (V. Chizhikov et al., J. Clin. Microbiol. 40:2398-2407, 2002). The expanded version of the rotavirus microarray assay presented herein is capable of identifying (i) five clinically relevant human rotavirus VP4 genotypes (P[4], P[6], P[8], P[9], and P[14]) and (ii) five additional human rotavirus VP7 genotypes (G5, G6, G8, G10, and G12) on one chip. Initially, a total of 80 cell culture-adapted human and animal reference rotavirus strains of known P (P[1] to P[12], P[14], P[16], and P[20]) and G (G1-6, G8 to G12, and G14) genotypes isolated in various parts of the world were employed to evaluate the new microarray assay. All rotavirus strains bearing P[4], P[6], P[8], P[9], or P[14] and/or G1 to G6, G8 to G10, or G12 specificity were identified correctly. In addition, cross-reactivity to viruses of genotype G11, G13, or G14 or P[1] to P[3], P[5], P[7], P[10] to P[12], P[16], or P[20] was not observed. Next, we analyzed a total of 128 rotavirus-positive human stool samples collected in three countries (Brazil, Ghana, and the United States) by this assay and validated its usefulness. The results of this study showed that the assay was sensitive and specific and capable of unambiguously discriminating mixed rotavirus infections from nonspecific cross-reactivity; the inability to discriminate mixed infections from nonspecific cross-reactivity is one of the inherent shortcomings of traditional multiplex reverse transcription-PCR genotyping. Moreover, because the hybridization patterns exhibited by rotavirus strains of different genotypes can vary, this method may be ideal for analyzing the genetic polymorphisms of the VP7 or VP4 genes of rotaviruses.

Download full-text


Available from: Maria Do Carmo Sampaio Tavares Timenetsky, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A microtiter plate hybridization-based PCR-enzyme-linked immunosorbent assay (PCR-ELISA) has been used for the detection and identification of a variety of microorganisms. Here, we report the development of a PCR-ELISA for the identification of clinically relevant human rotavirus VP7 (G1 to G6, G8 to G10, and G12) and VP4 (P[4], P[6], P[8], P[9], and P[14]) genotypes. The G and P types of reference human and animal rotavirus strains for which specific probes were available were correctly identified by the PCR-ELISA. In addition, reference strains bearing G or P genotypes for which specific probes were unavailable, such as G11, G14, P[3], P[10], and P[11], did not display any cross-reactivity to the probes. The usefulness of the assay was further evaluated by analyzing a total of 396 rotavirus-positive stool samples collected in four countries: Brazil, Ghana, Japan, and the United States. The results of this study showed that the PCR-ELISA was sensitive and easy to perform without the use of any expensive and sophisticated equipment, the reagents used are easy to obtain commercially and advantageous over multiplex PCR since more than one type-specific probe is used and the selection of probes is more flexible.
    Journal of clinical microbiology 03/2008; 46(2):462-9. DOI:10.1128/JCM.01361-07 · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adaptation through fixation of spontaneous mutations in the viral genome is considered to be one of the important factors that enable recurrent West Nile virus (WNV) outbreaks in the U.S. Genetic variations can alter viral phenotype and virulence, and degrade the performance of diagnostic and screening assays, vaccines, and potential therapeutic agents. A microarray assay was developed and optimized for the simultaneous detection of any nucleotide mutations in the entire structural region of WNV in order to facilitate public health surveillance of genetic variation of WNV. The DNA microarray consists of 263 oligonucleotide probes overlapping at half of their lengths which have been immobilized on an amine-binding glass slide. The assay was validated using 23 WNV isolates from the 2002-2005 U.S. epidemics. Oligonucleotide-based WNV arrays detected unambiguously all mutations in the structural region of each one of the isolates identified previously by sequencing analysis, serving as a rapid and effective approach for the identification of mutations in the WNV genome.
    Journal of Virological Methods 11/2008; 154(1-2):27-40. DOI:10.1016/j.jviromet.2008.09.015 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotavirus is the most common cause of acute gastroenteritis among infants and young children throughout the world, but rotavirus cases in developing countries account for nearly all of the approximately 600,000 annual deaths. We studied the epidemiology of rotavirus in 22 rural communities in northern coastal Ecuador over a five-year period. From 250 rotavirus positive stool specimens, the percentage that could not be RT-PCR genotyped for VP4 and VP7 was 77% and 63%, respectively. The possibility of sample degradation was considered but discounted after an experimental examination of rotavirus stability and EM visualization of rotavirus-like particles in several untypeable samples. Finally, alternate primers were used to amplify Ecu534, a sample that was untypeable using most published VP4 and VP7 primers. Characterization of the VP7, VP4, and VP6 full gene segments revealed novel genotypes and nucleotide mismatches with most published primer sequences. When considered with other findings, our results suggest that primer mismatch may be a widespread cause of genotyping failure, and might be particularly problematic in countries with greater rotavirus diversity. The novel sequences described in this study have been given GenBank accession numbers EU805775 (VP7), EU805773 (VP4), EU805774 (VP6) and the RCWG has assigned them novel genotypes G20P[28]I13, respectively.
    Virology 02/2009; 385(1):58-67. DOI:10.1016/j.virol.2008.11.026 · 3.28 Impact Factor